A global test for groups of genes: testing association with a clinical outcome

被引:794
作者
Goeman, JJ
van de Geer, SA
de Kort, F
van Houwelingen, HC
机构
[1] Leiden Univ, Med Ctr, Dept Med Stat, NL-2300 RC Leiden, Netherlands
[2] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
[3] Leiden Univ, Med Ctr, Ctr Human & Clin Genet, NL-2300 RA Leiden, Netherlands
关键词
D O I
10.1093/bioinformatics/btg382
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: This paper presents a global test to be used for the analysis of microarray data. Using this test it can be determined whether the global expression pattern of a group of genes is significantly related to some clinical outcome of interest. Groups of genes may be any size from a single gene to all genes on the chip (e.g. known pathways, specific areas of the genome or clusters from a cluster analysis). Result: The test allows groups of genes of different size to be compared, because the test gives one p-value for the group, not a p-value for each gene. Researchers can use the test to investigate hypotheses based on theory or past research or to mine gene ontology databases for interesting pathways. Multiple testing problems do not occur unless many groups are tested. Special attention is given to visualizations of the test result, focussing on the associations between samples and showing the impact of individual genes on the test result.
引用
收藏
页码:93 / 99
页数:7
相关论文
共 11 条
  • [1] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [2] Classification of microarray data with penalized logistic regression
    Eilers, PHC
    Boer, JM
    van Ommen, GJ
    van Houwelingen, HC
    [J]. MICROARRAYS: OPTICAL TECHNOLOGIES AND INFORMATICS, 2001, 4266 : 187 - 198
  • [3] Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    Golub, TR
    Slonim, DK
    Tamayo, P
    Huard, C
    Gaasenbeek, M
    Mesirov, JP
    Coller, H
    Loh, ML
    Downing, JR
    Caligiuri, MA
    Bloomfield, CD
    Lander, ES
    [J]. SCIENCE, 1999, 286 (5439) : 531 - 537
  • [4] RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS
    HOERL, AE
    KENNARD, RW
    [J]. TECHNOMETRICS, 1970, 12 (01) : 55 - &
  • [5] Testing familial aggregation
    HouwingDuistermaat, JJ
    Derkx, BHF
    Rosendaal, FR
    vanHouwelingen, HC
    [J]. BIOMETRICS, 1995, 51 (04) : 1292 - 1301
  • [6] Huber Wolfgang, 2002, Bioinformatics, V18 Suppl 1, pS96
  • [7] TESTING THE FIT OF A REGRESSION-MODEL VIA SCORE TESTS IN RANDOM EFFECTS MODELS
    LECESSIE, S
    VANHOUWELINGEN, HC
    [J]. BIOMETRICS, 1995, 51 (02) : 600 - 614
  • [8] LECESSIE S, 1992, APPL STAT-J ROY ST C, V41, P191
  • [9] McCullagh P., 2018, Generalized Linear Models