The percolation transition in the zero-temperature Domany model

被引:5
|
作者
Camia, F
Newman, CM
机构
[1] ETH, Forschungsinst Math, CH-8092 Zurich, Switzerland
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
dependent percolation; critical exponents; universality; cellular automaton; zero-temperature dynamics;
D O I
10.1023/B:JOSS.0000013965.36344.75
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze a deterministic cellular automaton sigma=(sigma(n): ngreater than or equal to0) corresponding to the zero-temperature case of Domany's stochastic Ising ferromagnet on the hexagonal lattice H. The state space L-H={- 1,+ 1}(H) consists of assignments of - 1 or + 1 to each site of H and the initial state sigma(0)={sigma(x)(o)}(x is an element of H) is chosen randomly with P(sigma(x)(o) = +1)= p is an element of [0, 1]. The sites of H are partitioned in two sets A and B so that all the neighbors of a site x in A belong to B and vice versa, and the discrete time dynamics is such that the sigma(x)'s with x is an element of A ( respectively, B) are updated simultaneously at odd (resp., even) times, making sigma(x) agree with the majority of its three neighbors. In ref. 1 it was proved that there is a percolation transition at p = 1/2 in the percolation models defined by sigma(n), for all times n is an element of [1, infinity]. In this paper, we study the nature of that transition and prove that the critical exponents beta, nu, and eta of the dependent percolation models defined by sigma(n), n is an element of [1, infinity], have the same values as for standard two-dimensional independent site percolation ( on the triangular lattice).
引用
收藏
页码:1199 / 1210
页数:12
相关论文
共 50 条
  • [1] The Percolation Transition in the Zero-Temperature Domany Model
    Federico Camia
    Charles M. Newman
    Journal of Statistical Physics, 2004, 114 : 1199 - 1210
  • [2] The Percolation Transition for the Zero-Temperature Stochastic Ising Model on the Hexagonal Lattice
    C. Douglas Howard
    Charles M. Newman
    Journal of Statistical Physics, 2003, 111 : 57 - 62
  • [3] The percolation transition for the zero-temperature stochastic Ising model on the hexagonal lattice
    Howard, CD
    Newman, CM
    JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (1-2) : 57 - 72
  • [4] PERCOLATION AS THE ZERO-TEMPERATURE LIMIT OF THE DILUTE ISING-MODEL
    THORPE, MF
    KIRKPATRICK, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (10): : 1835 - 1841
  • [5] Phase transition in an asymmetric generalization of the zero-temperature Glauber model
    Khorrami, M
    Aghamohammadi, A
    PHYSICAL REVIEW E, 2001, 63 (04):
  • [6] Thermal vestige of the zero-temperature jamming transition
    Zhang, Zexin
    Xu, Ning
    Chen, Daniel T. N.
    Yunker, Peter
    Alsayed, Ahmed M.
    Aptowicz, Kevin B.
    Habdas, Piotr
    Liu, Andrea J.
    Nagel, Sidney R.
    Yodh, Arjun G.
    NATURE, 2009, 459 (7244) : 230 - 233
  • [7] Zero-temperature glass transition in two dimensions
    Ludovic Berthier
    Patrick Charbonneau
    Andrea Ninarello
    Misaki Ozawa
    Sho Yaida
    Nature Communications, 10
  • [8] Rheology across the Zero-Temperature Jamming Transition
    Paredes, Jose
    Michels, Matthias A. J.
    Bonn, Daniel
    PHYSICAL REVIEW LETTERS, 2013, 111 (01)
  • [9] Zero-temperature glass transition in two dimensions
    Berthier, Ludovic
    Charbonneau, Patrick
    Ninarello, Andrea
    Ozawa, Misaki
    Yaida, Sho
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [10] Thermal vestige of the zero-temperature jamming transition
    Zexin Zhang
    Ning Xu
    Daniel T. N. Chen
    Peter Yunker
    Ahmed M. Alsayed
    Kevin B. Aptowicz
    Piotr Habdas
    Andrea J. Liu
    Sidney R. Nagel
    Arjun G. Yodh
    Nature, 2009, 459 : 230 - 233