Multiple solutions of Sturm-Liouville boundary value problem via lower and upper solutions and variational methods

被引:10
作者
Tian, Yu [1 ]
Ge, Weigao [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Inst Technol, Dept Appl Math, Beijing 100081, Peoples R China
基金
美国国家科学基金会;
关键词
Multiple solutions; Sturm-Liouville boundary value problem; Critical point; Lower and upper solutions; Variational methods; SIGN-CHANGING SOLUTIONS; IMPULSIVE DIFFERENTIAL-EQUATIONS; DIMENSIONAL P-LAPLACIAN; CRITICAL-POINTS THEOREM; KIRCHHOFF TYPE PROBLEMS; POSITIVE SOLUTIONS; INVARIANT-SETS; NONTRIVIAL SOLUTIONS; DESCENDING FLOW; HILBERT-SPACES;
D O I
10.1016/j.na.2011.06.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of multiple solutions for second order Sturm-Liouville boundary value problem {-Lu = f (x, u), x is an element of [0, 1] R(1)(u) = 0, R(2)(u) = 0, where Lu = (p(x)u')' - q(x) u is a Sturm-Liouville operator, R(1)(u) = alpha u'(0) - beta u(0), R(2)(u) = gamma u'(1)+sigma u(1). The technical approach is fully based on lower and upper solutions and variational methods. The interesting point is that the existence of four solutions and seven solutions is given. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6733 / 6746
页数:14
相关论文
共 40 条
[1]   The existence of positive solutions for the Sturm-Liouville boundary value problems [J].
Agarwal, RP ;
Hong, HL ;
Yeh, CC .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (09) :89-96
[2]  
[Anonymous], 1986, C BOARD MATH SCI
[3]   Existence results for superlinear semipositone BVP's [J].
Anuradha, V ;
Hai, DD ;
Shivaji, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :757-763
[4]   Three solutions for a quasilinear two-point boundary-value problem involving the one-dimensional p-laplacian [J].
Averna, D ;
Bonanno, G .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :257-270
[5]  
Averna D., 2003, Topol. Meth. Nonl. Anal., V22, P93
[6]   The upper and lower solution method for some fourth-order boundary value problems [J].
Bai, Zhanbing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (06) :1704-1709
[7]  
Bai ZB, 2006, MATH INEQUAL APPL, V9, P437
[8]  
BONANNO G, 2009, MOLICA BISCI INFINIT, P1
[9]   On the structure of the critical set of non-differentiable functions with a weak compactness condition [J].
Bonanno, Gabriele ;
Marano, Salvatore A. .
APPLICABLE ANALYSIS, 2010, 89 (01) :1-10
[10]   Multiplicity results for Sturm-Liouville boundary value problems [J].
Bonanno, Gabriele ;
Riccobono, Giuseppa .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) :294-297