A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems

被引:82
|
作者
Li, Chuang [1 ]
Li, Guojie [1 ]
Wang, Keyou [1 ]
Han, Bei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Key Lab Control Power Transmiss & Convers, Minist Educ, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Integrated energy system; Multi-energy load forecasting; Pearson correlation coefficient; Convolutional neural network; Gated recurrent unit; Transfer learning; NEURAL-NETWORK; MODEL; REGRESSION;
D O I
10.1016/j.energy.2022.124967
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the integrated energy system with small samples, insufficient data limits the accuracy of energy load forecasting and thereafter affects the system's economic operation and optimal dispatch. For this specific environment, this paper proposes a multi-energy load forecasting method based on the neural network model and transfer learning to meet the demand of enterprises for forecasting accuracy. The method improves forecasting accuracy through three stages including data analysis and processing, a combined model built and load forecasting. More specifically, the Pearson correlation coefficient is used to filter out meteorological variables with strong correlation based on energy load and meteorological data. A combined model is developed based on the convolutional neural network and gated recurrent unit. A model structure adjustment strategy based on the maximum mean difference is proposed to dynamize the structure to cope with the complex prediction environment. The synergy between source and target domain data is realized based on transfer learning. In addition, the model performance is further optimized through model training, transfer learning, and parameter finetuning, which lays the foundation for improving the forecasting accuracy of electricity, gas, cooling, and heating loads. The simulation results show that the proposed method can achieve satisfactory predictions for integrated energy systems with small sample data.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Enhanced multi-energy load forecasting via multi-task learning and GRU-attention networks in integrated energy systems
    Heng, Shengjiang
    ELECTRICAL ENGINEERING, 2025,
  • [2] Load Forecasting Method Based on CNN-GRU Hybrid Neural Network
    Yao C.
    Yang P.
    Liu Z.
    Dianwang Jishu/Power System Technology, 2020, 44 (09): : 3416 - 3423
  • [3] Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism
    Niu, Dongxiao
    Yu, Min
    Sun, Lijie
    Gao, Tian
    Wang, Keke
    APPLIED ENERGY, 2022, 313
  • [4] Multi-energy load forecasting for regional integrated energy systems considering temporal dynamic and coupling characteristics
    Wang, Shaomin
    Wang, Shouxiang
    Chen, Haiwen
    Gu, Qiang
    ENERGY, 2020, 195
  • [5] A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN
    Li, Ke
    Mu, Yuchen
    Yang, Fan
    Wang, Haiyang
    Yan, Yi
    Zhang, Chenghui
    APPLIED ENERGY, 2023, 351
  • [6] Multi-Energy Load Forecasting in Integrated Energy Systems: A Spatial-Temporal Adaptive Personalized Federated Learning Approach
    Wu, Huayi
    Xu, Zhao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (10) : 12262 - 12274
  • [7] A Short-term Power Load Forecasting Method Based on Attention Mechanism of CNN-GRU
    Zhao B.
    Wang Z.
    Ji W.
    Gao X.
    Li X.
    Dianwang Jishu/Power System Technology, 2019, 43 (12): : 4370 - 4376
  • [8] Multi-energy load forecasting via hierarchical multi-task learning and spatiotemporal attention
    Song, Cairong
    Yang, Haidong
    Cai, Jianyang
    Yang, Pan
    Bao, Hao
    Xu, Kangkang
    Meng, Xian-Bing
    APPLIED ENERGY, 2024, 373
  • [9] Geometric Loss-Enabled Complex Neural Network for Multi-Energy Load Forecasting in Integrated Energy Systems
    Zhao, Pengfei
    Cao, Di
    Hu, Weihao
    Huang, Yuehui
    Hao, Ming
    Huang, Qi
    Chen, Zhe
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (04) : 5659 - 5671
  • [10] Short-Term Bus Load Forecasting Method Based on CNN-GRU Neural Network
    Shen, Maoya
    Xu, Qifeng
    Wang, Kaijie
    Tu, Mengfu
    Wu, Bingxiang
    PROCEEDINGS OF 2019 INTERNATIONAL FORUM ON SMART GRID PROTECTION AND CONTROL (PURPLE MOUNTAIN FORUM), VOL II, 2020, 585 : 711 - 722