lk,s-Singular values and spectral radius of partially symmetric rectangular tensors

被引:8
|
作者
Yao, Hongmei [1 ]
Long, Bingsong [1 ]
Bu, Changjiang [1 ]
Zhou, Jiang [1 ]
机构
[1] Harbin Engn Univ, Coll Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
l(k; s)-Singular values; spectral radius; positive definiteness; partially symmetric rectangular tensor; weakly irreducible; STRONG ELLIPTICITY; LARGEST EIGENVALUE; CURRENT SITUATION; SINGULAR-VALUES; EQUATIONS;
D O I
10.1007/s11464-015-0494-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we first study properties of l(k,s)-singular values of real rectangular tensors. Then, a necessary and sufficient condition for the positive definiteness of partially symmetric rectangular tensors is given. Furthermore, we show that the weak Perron-Frobenius theorem for nonnegative partially symmetric rectangular tensor keeps valid under some new conditions and we prove a maximum property for the largest lk, s-singular values of nonnegative partially symmetric rectangular tensor. Finally, we prove that the largest l(k, s)-singular value of nonnegative weakly irreducible partially symmetric rectangular tensor is still geometrically simple.
引用
收藏
页码:605 / 622
页数:18
相关论文
共 17 条
  • [1] lk,s-Singular values and spectral radius of partially symmetric rectangular tensors
    Hongmei Yao
    Bingsong Long
    Changjiang Bu
    Jiang Zhou
    Frontiers of Mathematics in China, 2016, 11 : 605 - 622
  • [2] lk,s-Singular values and spectral radius of rectangular tensors
    Chen Ling
    Liqun Qi
    Frontiers of Mathematics in China, 2013, 8 : 63 - 83
  • [3] l k,s -Singular values and spectral radius of rectangular tensors
    Ling, Chen
    Qi, Liqun
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (01) : 63 - 83
  • [4] Brualdi-type inclusion sets of Z-eigenvalues and lk,s-singular values for tensors
    Hongmei Yao
    Li Ma
    Chunmeng Liu
    Changjiang Bu
    Frontiers of Mathematics in China, 2020, 15 : 601 - 612
  • [5] lp/2,q/2-Singular values of a real partially symmetric rectangular tensor
    Zhao, Jianxing
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (02) : 843 - 875
  • [6] lp,q-SINGULAR VALUES OF A PARTIALLY SYMMETRIC RECTANGULAR TENSOR
    Zhao, Jianxing
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (02): : 151 - 173
  • [7] lp,q/2-SINGULAR VALUES OF A REAL PARTIALLY SYMMETRIC RECTANGULAR TENSOR
    Zhao, Jianxing
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (03) : 967 - 993
  • [8] Brualdi-type inclusion sets ofZ-eigenvalues andlk,s-singular values for tensors
    Yao, Hongmei
    Ma, Li
    Liu, Chunmeng
    Bu, Changjiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (03) : 601 - 612
  • [9] PARTIALLY SYMMETRIC NONNEGATIVE RECTANGULAR TENSORS AND COPOSITIVE RECTANGULAR TENSORS
    Gu, Yining
    Wu, Wei
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (02) : 775 - 789
  • [10] On copositiveness identification of partially symmetric rectangular tensors
    Wang, Chunyan
    Chen, Haibin
    Wang, Yiju
    Zhou, Guanglu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372