Ultrastable Orthorhombic Na2TiSiO5 Anode for Lithium-Ion Battery

被引:27
作者
Zhao, Shu [1 ,2 ]
He, Di [1 ,2 ]
Wu, Tianhao [1 ,2 ]
Wang, Lihang [1 ,2 ]
Yu, Haijun [1 ,2 ]
机构
[1] Beijing Univ Technol, Inst Adv Battery Mat & Devices, Fac Mat & Mfg, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Key Lab Adv Funct Mat, Minist Educ, Beijing 100124, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
anodes; lithium ion batteries; titanium-based oxides; titanosilicate; CRYSTAL-STRUCTURE; LI2TISIO5; ENERGY; PERFORMANCE; GRAPHITE; DENSITY; ULTRAFAST; MECHANISM; STORAGE;
D O I
10.1002/aenm.202102709
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion batteries (LIBs) play an important role in the storage of electrical energy in modern society, and there is an urgent need to develop anode materials that can meet the ever-increasing demand for high energy density. The use of titanosilicate anode materials in high-performance LIBs has attracted great attention due to their proper potential between graphite and Li4Ti5O12. A novel anode material prepared by an electrospinning method, orthorhombic Na2TiSiO5 (O-NTSO) shows excellent cycle stability (capacity retention after 1000 cycles is 97.8%) and a usable reversible capacity (230 mAh g(-1) at 50 mA g(-1)) with a safe average storage voltage of 0.8 V. The specific capacity of O-NTSO is constituted by both capacitive and diffusion behavior. As a new member of the silicate anode materials, this orthorhombic Na2TiSiO5 has excellent electrochemical performance and is a promising LIB anode material with long cycle stability.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Amorphous germanium oxide nanobubbles for lithium-ion battery anode [J].
Lim, Seh-Yoon ;
Jang, Wonseok ;
Yun, Soyeong ;
Yoon, Won-Sub ;
Choi, Jae-Young ;
Whang, Dongmok .
MATERIALS RESEARCH BULLETIN, 2019, 110 :24-31
[22]   Numerical simulation of functioning a silicene anode of a lithium-ion battery [J].
Galashev, Alexander Y. .
JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 64
[23]   Silicon-Nanodiamond-Based Anode for a Lithium-Ion Battery [J].
Jhan, Cheng-Ying ;
Sung, Shi-Hong ;
Tzeng, Yonhua .
NANOMATERIALS, 2024, 14 (01)
[24]   Li2TiSiO5 and expanded graphite nanocomposite anode material with improved rate performance for lithium-ion batteries [J].
Liu, Jingyuan ;
Liu, Yao ;
Hou, Mengyan ;
Wang, Yonggang ;
Wang, Congxiao ;
Xia, Yongyao .
ELECTROCHIMICA ACTA, 2018, 260 :695-702
[25]   Validation of Na2MnSnO4/Graphene Anode for Potential Lithium-Ion Battery Applications [J].
Suresh Babu, G. N. ;
Kalaiselvi, N. .
CHEMELECTROCHEM, 2021, 8 (21) :4054-4061
[26]   Preparation and evaluation of Fe2TiO5/graphene nanocomposites as anode material for high-performance lithium-ion battery [J].
Liang, Qianqian ;
Xu, Li ;
Hu, Jiawen ;
Li, Xinwei ;
Ding, Changsheng ;
Gao, Yanfeng .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 980
[27]   Growth of MoS2@C nanobowls as a lithium-ion battery anode material [J].
Cui, Chunyu ;
Li, Xiu ;
Hu, Zhe ;
Xu, Jiantie ;
Liu, Huakun ;
Ma, Jianmin .
RSC ADVANCES, 2015, 5 (112) :92506-92514
[28]   Intercalated hydrates stabilize bulky MoS2 anode for Lithium-Ion battery [J].
Xie, Miao ;
Lv, Zhuoran ;
Zhao, Wei ;
Fang, Yuqiang ;
Huang, Jian ;
Huang, Fuqiang .
CHEMICAL ENGINEERING JOURNAL, 2023, 470
[29]   Facile synthesis of a hierarchical manganese oxide hydrate for superior lithium-ion battery anode [J].
Jiang, Caihua ;
Tang, Zilong ;
Zhang, Zhongtai .
IONICS, 2019, 25 (08) :3577-3586
[30]   Silicon nanowires used as the anode of a lithium-ion battery [J].
Prosini, Pier Paolo ;
Rufoloni, Alessandro ;
Rondino, Flaminia ;
Santoni, Antonino .
NANOFORUM 2014, 2015, 1667