Some remarks on the integration of the Poisson algebra

被引:1
作者
Banyaga, A
Donato, P
机构
[1] UNIV AIX MARSEILLE 1,CTR MATH & INFORMAT,F-13453 MARSEILLE,FRANCE
[2] PENN STATE UNIV,DEPT MATH,UNIVERSITY PK,PA 16802
基金
美国国家科学基金会;
关键词
integrability; weak integrability; Poisson algebra; infinite dimensional Lie algebra; Calabi homomorphism;
D O I
10.1016/0393-0440(95)00039-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the integrability of the Poisson algebra of functions with compact supports of a noncompact manifold, We also determine a Lie subalgebra of vector fields which, weakly, integrate the Poisson algebra of a not necessarily compact manifold covered by an exact symplectic manifold.
引用
收藏
页码:368 / 378
页数:11
相关论文
共 20 条
[1]  
ADAMS M, 1985, INFINITE DIMENSIONAL, V4, P1
[2]   FIXED-POINTS OF SYMPLECTIC MAPS [J].
BANYAGA, A .
INVENTIONES MATHEMATICAE, 1980, 56 (03) :215-229
[4]  
BANYAGA A, 1979, MONOGRAPH ENSEIG MAT, P47
[5]   ON CONTACT MANIFOLDS [J].
BOOTHBY, WM ;
WANG, HC .
ANNALS OF MATHEMATICS, 1958, 68 (03) :721-734
[6]  
BROWDER W, 1960, P NATL ACAD SCI USA, V46, P540
[7]  
DUMORTIER F, 1973, SOC BRAS MATH, V4, P167
[8]  
Kostant B., 1970, In Lectures in modern analysis and appli- cations, III, pages 87-208. Lecture Notes in Math., P87, DOI 10.1007/bfb0079068
[9]   ON THE LIE SUBGROUPS OF INFINITE DIMENSIONAL LIE-GROUPS [J].
LESLIE, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 16 (01) :105-108
[10]  
Leslie J., 1972, J DIFFER GEOM, V7, P597