Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions

被引:270
作者
Zheng, Xueying [1 ]
Bommier, Clement [4 ]
Luo, Wei [1 ]
Jiang, Linghao [1 ]
Hao, Yanan [2 ,3 ]
Huang, Yunhui [1 ]
机构
[1] Tongji Univ, Inst New Energy Vehicles, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[4] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA
关键词
Sodium-ion battery; Na metal anode; Solid electrolyte interphase; Volume change; Coulombic efficiency; SOLID-ELECTROLYTE INTERPHASE; HIGH-CAPACITY ANODE; LITHIUM-METAL; NA-O-2; BATTERIES; CELL CHEMISTRY; ELECTROCHEMICAL INTERCALATION; ELECTRICAL-PROPERTIES; POLYMER ELECTROLYTES; LIQUID ELECTROLYTES; SECONDARY BATTERIES;
D O I
10.1016/j.ensm.2018.04.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Room-temperature (RT) sodium-ion batteries (SIBs) have gained much attention due to rich sodium resource and low cost for potential application in large-scale energy storage. To date, cathode materials have been well investigated, but anode materials still face long-standing challenges including low capacity and high cost, which have led to comprehensive research efforts in resolving these issues. Among the many candidate anode materials best suited to meet these challenges, Na metal possesses the most future potential: the lowest redox potential, highest theoretical capacity, earth-abundancy and a demonstrated feasibility in previous electrochemical systems. Yet several factors still hinder the applicability of Na metal anodes in future larger scale, such as unstable solid electrolyte interphase, large volume change upon cycling and safety concerns related to the uncontrolled dendritic Na growth. As such, this review summarizes the applications of Na metal anodes before providing an in-depth review of research efforts attempting to solve the aforementioned challenges. Specifically, recently-developed strategies to protect Na metal anodes by electrolyte optimization, artificial solid electrolyte interphase, and electrode structure design are outlined and analyzed in detail. We also highlight recent progresses on Na metal protection based on solid-state batteries and conclude by providing a future outlook on the development of Na metal anodes.
引用
收藏
页码:6 / 23
页数:18
相关论文
共 206 条
  • [21] Enabling room temperature sodium metal batteries
    Cao, Ruiguo
    Mishra, Kuber
    Li, Xiaolin
    Qian, Jiangfeng
    Engelhard, Mark H.
    Bowden, Mark E.
    Han, Kee Sung
    Mueller, Karl T.
    Henderson, Wesley A.
    Zhang, Ji-Guang
    [J]. NANO ENERGY, 2016, 30 : 825 - 830
  • [22] A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability
    Carter, Rachel
    Oakes, Landon
    Douglas, Anna
    Muralidharan, Nitin
    Cohn, Adam P.
    Pint, Cary L.
    [J]. NANO LETTERS, 2017, 17 (03) : 1863 - 1869
  • [23] ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS
    CHAZALVIEL, JN
    [J]. PHYSICAL REVIEW A, 1990, 42 (12): : 7355 - 7367
  • [24] Electrolyte design strategies and research progress for room-temperature sodium-ion batteries
    Che, Haiying
    Chen, Suli
    Xie, Yingying
    Wang, Hong
    Amine, Khalil
    Liao, Xiao-Zhen
    Ma, Zi-Feng
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) : 1075 - 1101
  • [25] Ionic liquid electrolytes with high sodium ion fraction for high-rate and long-life sodium secondary batteries
    Chen, Chih-Yao
    Kiko, Tomohiro
    Hosokawa, Takafumi
    Matsumoto, Kazuhiko
    Nohira, Toshiyuki
    Hagiwara, Rika
    [J]. JOURNAL OF POWER SOURCES, 2016, 332 : 51 - 59
  • [26] Improved Electrochemical Performance of NaVOPO4 Positive Electrodes at Elevated Temperature in an Ionic Liquid Electrolyte
    Chen, Chih-Yao
    Matsumoto, Kazuhiko
    Nohira, Toshiyuki
    Hagiwara, Rika
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) : A2093 - A2098
  • [27] Full Utilization of Superior Charge-Discharge Characteristics of Na1.56Fe1.22P2O7 Positive Electrode by Using Ionic Liquid Electrolyte
    Chen, Chih-Yao
    Matsumoto, Kazuhiko
    Nohira, Toshiyuki
    Hagiwara, Rika
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (01) : A176 - A180
  • [28] Na2MnSiO4 as a positive electrode material for sodium secondary batteries using an ionic liquid electrolyte
    Chen, Chih-Yao
    Matsumoto, Kazuhiko
    Nohira, Toshiyuki
    Hagiwara, Rika
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2014, 45 : 63 - 66
  • [29] Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
    Cheng, Xin-Bing
    Zhang, Rui
    Zhao, Chen-Zi
    Zhang, Qiang
    [J]. CHEMICAL REVIEWS, 2017, 117 (15) : 10403 - 10473
  • [30] A Review of Solid Electrolyte Interphases on Lithium Metal Anode
    Cheng, Xin-Bing
    Zhang, Rui
    Zhao, Chen-Zi
    Wei, Fei
    Zhang, Ji-Guang
    Zhang, Qiang
    [J]. ADVANCED SCIENCE, 2016, 3 (03)