Simulation-Assisted Determination of the Start-Up Time of a Polymer Electrolyte Fuel Cell

被引:3
作者
Bodner, Merit [1 ]
Penga, Zeljko [2 ]
Ladreiter, Walter [1 ]
Heidinger, Mathias [1 ]
Hacker, Viktor [1 ]
机构
[1] Graz Univ Technol, Inst Chem Engn & Environm Technol, Inffeldgasse 25C, A-8010 Graz, Austria
[2] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia
关键词
fuel cell start-up; transient CFD simulation; fuel cell degradation; LIQUID WATER; TEMPERATURE; DEGRADATION; TRANSPORT; CFD;
D O I
10.3390/en14237929
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Fuel starvation is a major cause of anode corrosion in low temperature polymer electrolyte fuel cells. The fuel cell start-up is a critical step, as hydrogen may not yet be evenly distributed in the active area, leading to local starvation. The present work investigates the hydrogen distribution and risk for starvation during start-up and after nitrogen purge by extending an existing computational fluid dynamic model to capture transient behavior. The results of the numerical model are compared with detailed experimental analysis on a 25 cm(2) triple serpentine flow field with good agreement in all aspects and a required time step size of 1 s. This is two to three orders of magnitude larger than the time steps used by other works, resulting in reasonably quick calculation times (e.g., 3 min calculation time for 1 s of experimental testing time using a 2 million element mesh).
引用
收藏
页数:20
相关论文
共 25 条
[1]  
Bezmalinovic D, 2015, ACTA CHIM SLOV, V62, P83
[2]   Air Starvation Induced Degradation in Polymer Electrolyte Fuel Cells [J].
Bodner, M. ;
Schenk, A. ;
Salaberger, D. ;
Rami, M. ;
Hochenauer, C. ;
Hacker, V. .
FUEL CELLS, 2017, 17 (01) :18-26
[3]  
Bodner M., 2018, DEGRADATION MECH THE, P139, DOI [10.1016/b978-0-12-811459-9.00007-4, DOI 10.1016/B978-0-12-811459-9.00007-4]
[4]   The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells [J].
Bodner, Merit ;
Cermenek, Bernd ;
Rami, Mija ;
Hacker, Viktor .
MEMBRANES, 2015, 5 (04) :888-902
[5]   The Chemistry of Fuel Cell Membrane Chemical Degradation [J].
Coms, Frank D. .
PROTON EXCHANGE MEMBRANE FUEL CELLS 8, PTS 1 AND 2, 2008, 16 (02) :235-255
[6]   Transient two-dimensional model of heat and mass transfer in a PEM fuel cell membrane [J].
Dadda, Bachir ;
Abboudi, Said ;
Ghezal, Abderrahmane .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (17) :7092-7101
[7]   WATER-UPTAKE OF PERFLUOROSULFONIC ACID MEMBRANES FROM LIQUID WATER AND WATER-VAPOR [J].
HINATSU, JT ;
MIZUHATA, M ;
TAKENAKA, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (06) :1493-1498
[8]   CFD simulation of the transient gas transport in a PEM fuel cell cathode during AC impedance testing considering liquid water effects [J].
Iranzo, Alfredo ;
Boillat, Pierre .
ENERGY, 2018, 158 :449-457
[9]   Development of a Durable PEMFC Start-Up Process by Applying a Dummy Load II. Diagnostic Study [J].
Kim, Jae Hong ;
Cho, Eun Ae ;
Jang, Jong Hyun ;
Kim, Hyoung Juhn ;
Lim, Tae Hoon ;
Oh, In Hwan ;
Ko, Jae Jun ;
Son, Ik-Jae .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (01) :B118-B124
[10]   Cold start behavior and freeze characteristics of a polymer electrolyte membrane fuel cell [J].
Kocher, Katharina ;
Kolar, Stefan ;
Ladreiter, Walter ;
Hacker, Viktor .
FUEL CELLS, 2021, 21 (04) :363-372