Understanding the interplay of bifunctional and electronic effects: Microkinetic modeling of the CO electro-oxidation reaction

被引:36
作者
Baz, Adam
Holewinski, Adam
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Bifunctional; Microkinetic modeling; Platinum; Ruthenium; CO electro-oxidation; Electrocatalysis; HYDROUS RUTHENIUM OXIDE; FUEL-CELL; PT-RU; HETEROGENEOUS CATALYSIS; CARBON-MONOXIDE; ELECTROCATALYTIC ACTIVITY; ALLOY NANOPARTICLES; CRYSTALLINE DEFECTS; METHANOL OXIDATION; ANODE CATALYSTS;
D O I
10.1016/j.jcat.2020.02.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we build a microkinetic (MK) model of the CO electro-oxidation reaction using density functional theory (DFT) calculations and scaling relations to understand the interplay between bifunctional mechanisms and electronic modification. A single-site model is first used to identify trends in activity under different operating conditions. The model is then extended to include two site types to understand the surface characteristics necessary for bifunctional activity. For these general cases, we show that the "optimal" adsorption energetics change as a function of the applied potential. We then perform a case study by explicitly modeling both site types in platinum-ruthenium alloy models to assess whether bifunctional or electronic effects are most operative. We find that if these materials indeed remain metallic alloys, then electronic effects are likely dominant, with the sole active sites being electronically-modified Pt sites. Ru sites are spectators that favorably perturb the electronic structure of Pt. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 102 条
[1]   X-RAY-ABSORPTION NEAR-EDGE STRUCTURE STUDY OF THE ELECTROOXIDATION REACTION OF CO ON PT50RU50 NANOPARTICLES [J].
ABERDAM, D ;
DURAND, R ;
FAURE, R ;
GLOAGUEN, F ;
HAZEMANN, JL ;
HERRERO, E ;
KABBABI, A ;
ULRICH, O .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 398 (1-2) :43-47
[2]   Platinum monolayer fuel cell electrocatalysts [J].
Adzic, R. R. ;
Zhang, J. ;
Sasaki, K. ;
Vukmirovic, M. B. ;
Shao, M. ;
Wang, J. X. ;
Nilekar, A. U. ;
Mavrikakis, M. ;
Valerio, J. A. ;
Uribe, F. .
TOPICS IN CATALYSIS, 2007, 46 (3-4) :249-262
[3]   Scaling-Relation-Based Analysis of Bifunctional Catalysis: The Case for Homogeneous Bimetallic Alloys [J].
Andersen, Mie ;
Medford, Andrew J. ;
Norskov, Jens K. ;
Reuter, Karsten .
ACS CATALYSIS, 2017, 7 (06) :3960-3967
[4]   Analyzing the Case for Bifunctional Catalysis [J].
Andersen, Mie ;
Medford, Andrew J. ;
Norskov, Jens K. ;
Reuter, Karsten .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (17) :5210-5214
[5]   The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts [J].
Arenz, M ;
Mayrhofer, KJJ ;
Stamenkovic, V ;
Blizanac, BB ;
Tomoyuki, T ;
Ross, PN ;
Markovic, NM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (18) :6819-6829
[6]   Direct ethanol fuel cells for transport and stationary applications - A comprehensive review [J].
Badwal, S. P. S. ;
Giddey, S. ;
Kulkarni, A. ;
Goel, J. ;
Basu, S. .
APPLIED ENERGY, 2015, 145 :80-103
[7]   Design of an Active Site towards Optimal Electrocatalysis: Overlayers, Surface Alloys and Near-Surface Alloys of Cu/Pt(111) [J].
Bandarenka, Aliaksandr S. ;
Varela, Ana Sofia ;
Karamad, Mohammedreza ;
Calle-Vallejo, Federico ;
Bech, Lone ;
Perez-Alonso, Francisco J. ;
Rossmeisl, Jan ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (47) :11845-11848
[8]  
Bard AJ, 2001, ELECTROCHEMICAL METH, V2, P580
[9]   Ligand effects in heterogeneous catalysis and electrochemistry [J].
Bligaard, T. ;
Norskov, J. K. .
ELECTROCHIMICA ACTA, 2007, 52 (18) :5512-5516
[10]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979