The Sensitivity of the Marine Carbonate System to Regional Ocean Alkalinity Enhancement

被引:38
作者
Burt, Daniel J. J. [1 ,2 ]
Froeb, Friederike [1 ]
Ilyina, Tatiana [1 ]
机构
[1] Max Planck Gesell, Max Planck Inst Meteorol, Ocean Earth Syst, Hamburg, Germany
[2] Max Planck Gesell, Int Max Planck Res Sch Earth Syst Modelling, Hamburg, Germany
来源
FRONTIERS IN CLIMATE | 2021年 / 3卷
关键词
climate change mitigation; carbon cycle; ocean alkalinity enhancement; biogeochemical modelling; alkalinity sensitivity; carbonate system; GLOBAL OCEAN; DINITROGEN-FIXATION; INORGANIC CARBON; WATER MASSES; MODEL; ACIDIFICATION; CO2; PHYTOPLANKTON; CIRCULATION; IMPACTS;
D O I
10.3389/fclim.2021.624075
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ocean Alkalinity Enhancement (OAE) simultaneously mitigates atmospheric concentrations of CO2 and ocean acidification; however, no previous studies have investigated the response of the non-linear marine carbonate system sensitivity to alkalinity enhancement on regional scales. We hypothesise that regional implementations of OAE can sequester more atmospheric CO2 than a global implementation. To address this, we investigate physical regimes and alkalinity sensitivity as drivers of the carbon-uptake potential response to global and different regional simulations of OAE. In this idealised ocean-only set-up, total alkalinity is enhanced at a rate of 0.25 Pmol a(-1) in 75-year simulations using the Max Planck Institute Ocean Model coupled to the HAMburg Ocean Carbon Cycle model with pre-industrial atmospheric forcing. Alkalinity is enhanced globally and in eight regions: the Subpolar and Subtropical Atlantic and Pacific gyres, the Indian Ocean and the Southern Ocean. This study reveals that regional alkalinity enhancement has the capacity to exceed carbon uptake by global OAE. We find that 82-175 Pg more carbon is sequestered into the ocean when alkalinity is enhanced regionally and 156 PgC when enhanced globally, compared with the background-state. The Southern Ocean application is most efficient, sequestering 12% more carbon than the Global experiment despite OAE being applied across a surface area 40 times smaller. For the first time, we find that different carbon-uptake potentials are driven by the surface pattern of total alkalinity redistributed by physical regimes across areas of different carbon-uptake efficiencies. We also show that, while the marine carbonate system becomes less sensitive to alkalinity enhancement in all experiments globally, regional responses to enhanced alkalinity vary depending upon the background concentrations of dissolved inorganic carbon and total alkalinity. Furthermore, the Subpolar North Atlantic displays a previously unexpected alkalinity sensitivity increase in response to high total alkalinity concentrations.
引用
收藏
页数:15
相关论文
共 65 条
  • [41] McDougall T. J., 2011, GETTING STARTED TEOS, V127
  • [42] Ocean Alkalinity, Buffering and Biogeochemical Processes
    Middelburg, Jack J.
    Soetaert, Karline
    Hagens, Mathilde
    [J]. REVIEWS OF GEOPHYSICS, 2020, 58 (03)
  • [43] Mingle J, 2020, NEW YORK REV BOOKS, V67, P49
  • [44] Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2)
    Najjar, R. G.
    Jin, X.
    Louanchi, F.
    Aumont, O.
    Caldeira, K.
    Doney, S. C.
    Dutay, J. -C.
    Follows, M.
    Gruber, N.
    Joos, F.
    Lindsay, K.
    Maier-Reimer, E.
    Matear, R. J.
    Matsumoto, K.
    Monfray, P.
    Mouchet, A.
    Orr, J. C.
    Plattner, G. -K.
    Sarmiento, J. L.
    Schlitzer, R.
    Slater, R. D.
    Weirig, M. -F.
    Yamanaka, Y.
    Yool, A.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2007, 21 (03)
  • [45] The Global Ocean Data Analysis Project version 2 (GLODAPv2) - an internally consistent data product for the world ocean
    Olsen, Are
    Key, Robert M.
    van Heuven, Steven
    Lauvset, Siv K.
    Velo, Anton
    Lin, Xiaohua
    Schirnick, Carsten
    Kozyr, Alex
    Tanhua, Toste
    Hoppema, Mario
    Jutterstrom, Sara
    Steinfeldt, Reiner
    Jeansson, Emil
    Ishii, Masao
    Perez, Fiz F.
    Suzuki, Toru
    [J]. EARTH SYSTEM SCIENCE DATA, 2016, 8 (02) : 297 - 323
  • [46] Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)
    Orr, James C.
    Najjar, Raymond G.
    Aumont, Olivier
    Bopp, Laurent
    Bullister, John L.
    Danabasoglu, Gokhan
    Doney, Scott C.
    Dunne, John P.
    Dutay, Jean-Claude
    Graven, Heather
    Griffies, Stephen M.
    John, Jasmin G.
    Joos, Fortunat
    Levin, Ingeborg
    Lindsay, Keith
    Matear, Richard J.
    McKinley, Galen A.
    Mouchet, Anne
    Oschlies, Andreas
    Romanou, Anastasia
    Schlitzer, Reiner
    Tagliabue, Alessandro
    Tanhua, Toste
    Yool, Andrew
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (06) : 2169 - 2199
  • [47] Incorporating a prognostic representation of marine nitrogen fixers into the global ocean biogeochemical model HAMOCC
    Paulsen, Hanna
    Ilyina, Tatiana
    Six, Katharina D.
    Stemmler, Irene
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2017, 9 (01) : 438 - 464
  • [48] ERA-20C: An Atmospheric Reanalysis of the Twentieth Century
    Poli, Paul
    Hersbach, Hans
    Dee, Dick P.
    Berrisford, Paul
    Simmons, Adrian J.
    Vitart, Frederic
    Laloyaux, Patrick
    Tan, David G. H.
    Peubey, Carole
    Thepaut, Jean-Noel
    Tremolet, Yannick
    Holm, Elias V.
    Bonavita, Massimo
    Isaksen, Lars
    Fisher, Michael
    [J]. JOURNAL OF CLIMATE, 2016, 29 (11) : 4083 - 4097
  • [49] Assessing ocean alkalinity for carbon sequestration
    Renforth, Phil
    Henderson, Gideon
    [J]. REVIEWS OF GEOPHYSICS, 2017, 55 (03) : 636 - 674
  • [50] Roske F, 2005, GLOBAL OCEANIC HEAT