Monitoring the vertical distribution of HABs using hyperspectral imagery and deep learning models

被引:26
作者
Hong, Seok Min [1 ]
Baek, Sang-Soo [1 ]
Yun, Daeun [1 ]
Kwon, Yong-Hwan [2 ]
Duan, Hongtao [3 ]
Pyo, JongCheol [4 ]
Cho, Kyung Hwa [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, Ulsan 689798, South Korea
[2] Elect & Telecommun Res Inst, 218 Gajeong Ro, Daejeon 305700, South Korea
[3] Chinese Acad Sci, Nanjing Inst Geog & Limnol, Key Lab Watershed Geog Sci, Nanjing 210008, Peoples R China
[4] Korea Environm Inst, Ctr Environm Data Strategy, Sejong 30147, South Korea
关键词
Drone-borne hyperspectral image; Explainable deep learning model; Cyanobacteria; Vertical profile; REMOTE-SENSING REFLECTANCE; CHLOROPHYLL-A; CYANOBACTERIAL BLOOMS; DIURNAL CHANGES; INLAND WATERS; ALGAL BLOOMS; LAKE; MICROCYSTIS; PHYCOCYANIN; CLASSIFICATION;
D O I
10.1016/j.scitotenv.2021.148592
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing techniques have been applied to monitor the spatiotemporal variation of harmful algal blooms (HABs) in many inland waters. However, these studies have been limited to monitor the vertical distribution of HABs due to the optical complexity of inland water. Therefore, this study applied a deep neural network model to monitor the vertical distribution of Chlorophyll-a (Chl-a), phycocyanin (PC), and turbidity (Turb) using drone-borne hyperspectral imagery, in-situ measurement, and meteoroidal data. The pigment concentrations were measured between depths of 0 m and 5.0 m with 0.05 m intervals. Here, four state-of-the-art data driven model structures (ResNet-18, ResNet-101, GoogLeNet, and Inception v3) were adopted for estimating the vertical distributions of the harmful algal pigments. Among the four models, the ResNet-18 model showed the best performance, with an R-2 value of 0.70. In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) substantially provided informative reflectance band ranges near 490 nm and 620 nm in the hyperspectral image for the vertical estimation of pigments. Therefore, this study demonstrated that the explainable deep learning model with drone-borne hyperspectral images has the potential to estimate Chl-a, PC, and Turb vertical distributions and to show influential features that contribute to describing the vertical profile phenomena. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 79 条
[1]  
Agrawal N., 2011, 2011 Proceedings of International Conference on Emerging Trends in Networks and Computer Communications (ETNCC 2011), P195, DOI 10.1109/ETNCC.2011.5958515
[2]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[3]   Performance evaluation of phycocyanin probes for the monitoring of cyanobacteria [J].
Bastien, Christian ;
Cardin, Richard ;
Veilleux, Eloise ;
Deblois, Christian ;
Warren, Annabelle ;
Laurion, Isabelle .
JOURNAL OF ENVIRONMENTAL MONITORING, 2011, 13 (01) :110-118
[4]   Tracking cyanobacteria blooms: Do different monitoring approaches tell the same story? [J].
Bertani, Isabella ;
Steger, Cara E. ;
Obenour, Daniel R. ;
Fahnenstiel, Gary L. ;
Bridgeman, Thomas B. ;
Johengen, Thomas H. ;
Sayers, Michael J. ;
Shuchman, Robert A. ;
Scavia, Donald .
SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 575 :294-308
[5]   Spatial-temporal variability of in situ cyanobacteria vertical structure in Western Lake Erie: Implications for remote sensing observations [J].
Bosse, Karl R. ;
Sayers, Michael J. ;
Shuchman, Robert A. ;
Fahnenstiel, Gary L. ;
Ruberg, Steven A. ;
Fanslow, David L. ;
Stuart, Dack G. ;
Johengen, Thomas H. ;
Burtner, Ashley M. .
JOURNAL OF GREAT LAKES RESEARCH, 2019, 45 (03) :480-489
[6]   Supervised vicarious calibration (SVC) of hyperspectral remote-sensing data [J].
Brook, Anna ;
Ben Dor, Eyal .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (06) :1543-1555
[7]   Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters [J].
Cannizzaro, JP ;
Carder, KL .
REMOTE SENSING OF ENVIRONMENT, 2006, 101 (01) :13-24
[8]  
Canziani A., 2016, arXiv preprint arXiv:1605.07678
[9]   Grad-CAM plus plus : Generalized Gradient-based Visual Explanations for Deep Convolutional Networks [J].
Chattopadhay, Aditya ;
Sarkar, Anirban ;
Howlader, Prantik ;
Balasubramanian, Vineeth N. .
2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, :839-847
[10]   A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter [J].
Chen, J ;
Jönsson, P ;
Tamura, M ;
Gu, ZH ;
Matsushita, B ;
Eklundh, L .
REMOTE SENSING OF ENVIRONMENT, 2004, 91 (3-4) :332-344