COLI-Net: Deep learning-assisted fully automated COVID-19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images

被引:22
|
作者
Shiri, Isaac [1 ]
Arabi, Hossein [1 ]
Salimi, Yazdan [1 ]
Sanaat, Amirhossein [1 ]
Akhavanallaf, Azadeh [1 ]
Hajianfar, Ghasem [2 ]
Askari, Dariush [3 ]
Moradi, Shakiba [4 ]
Mansouri, Zahra [1 ]
Pakbin, Masoumeh [5 ]
Sandoughdaran, Saleh [6 ]
Abdollahi, Hamid [7 ]
Radmard, Amir Reza [8 ]
Rezaei-Kalantari, Kiara [2 ]
Oghli, Mostafa Ghelich [4 ,9 ]
Zaidi, Habib [1 ,10 ,11 ,12 ]
机构
[1] Geneva Univ Hosp, Div Nucl Med & Mol Imaging, CH-1211 Geneva, Switzerland
[2] Iran Univ Med Sci, Rajaie Cardiovasc Med & Res Ctr, Tehran, Iran
[3] Shahid Beheshti Univ Med Sci, Dept Radiol Technol, Tehran, Iran
[4] Med Fanavaran Plus Co, Res & Dev Dept, Karaj, Iran
[5] Qom Univ Med Sci, Clin Res Dev Ctr, Qom, Iran
[6] Shahid Beheshti Univ Med Sci, Mens Hlth & Reprod Hlth Res Ctr, Tehran, Iran
[7] Kerman Univ Med Sci, Fac Allied Med, Dept Radiol Technol, Kerman, Iran
[8] Univ Tehran Med Sci, Shariati Hosp, Dept Radiol, Tehran, Iran
[9] Katholieke Univ Leuven, Dept Cardiovasc Sci, Leuven, Belgium
[10] Univ Geneva, Neuroctr, Geneva, Switzerland
[11] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, Groningen, Netherlands
[12] Univ Southern Denmark, Dept Nucl Med, Odense, Denmark
基金
瑞士国家科学基金会;
关键词
COVID-19; deep learning; pneumonia; segmentation; X-ray CT; CT; CLASSIFICATION; FRAMEWORK; RISK; PET;
D O I
10.1002/ima.22672
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a deep learning (DL)-based automated whole lung and COVID-19 pneumonia infectious lesions (COLI-Net) detection and segmentation from chest computed tomography (CT) images. This multicenter/multiscanner study involved 2368 (347 ' 259 2D slices) and 190 (17 341 2D slices) volumetric CT exams along with their corresponding manual segmentation of lungs and lesions, respectively. All images were cropped, resized, and the intensity values clipped and normalized. A residual network with non-square Dice loss function built upon TensorFlow was employed. The accuracy of lung and COVID-19 lesions segmentation was evaluated on an external reverse transcription-polymerase chain reaction positive COVID-19 dataset (7 ' 333 2D slices) collected at five different centers. To evaluate the segmentation performance, we calculated different quantitative metrics, including radiomic features. The mean Dice coefficients were 0.98 +/- 0.011 (95% CI, 0.98-0.99) and 0.91 +/- 0.038 (95% CI, 0.90-0.91) for lung and lesions segmentation, respectively. The mean relative Hounsfield unit differences were 0.03 +/- 0.84% (95% CI, -0.12 to 0.18) and -0.18 +/- 3.4% (95% CI, -0.8 to 0.44) for the lung and lesions, respectively. The relative volume difference for lung and lesions were 0.38 +/- 1.2% (95% CI, 0.16-0.59) and 0.81 +/- 6.6% (95% CI, -0.39 to 2), respectively. Most radiomic features had a mean relative error less than 5% with the highest mean relative error achieved for the lung for the range first-order feature (-6.95%) and least axis length shape feature (8.68%) for lesions. We developed an automated DL-guided three-dimensional whole lung and infected regions segmentation in COVID-19 patients to provide fast, consistent, robust, and human error immune framework for lung and pneumonia lesion detection and quantification.
引用
收藏
页码:12 / 25
页数:14
相关论文
共 50 条
  • [31] Deep Transfer Learning for COVID-19 Detection and Lesion Recognition Using Chest CT Images
    Zhang, Sai
    Yuan, Guo-Chang
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [32] MSAMS-Net: accurate lung lesion segmentation from COVID-19 CT images
    Wang, Zhengyu
    Zhu, Haijiang
    Gao, Xiaoyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 82849 - 82870
  • [33] COVLIAS 3.0: cloud-based quantized hybrid UNet3+ deep learning for COVID-19 lesion detection in lung computed tomography
    Agarwal, Sushant
    Saxena, Sanjay
    Carriero, Alessandro
    Chabert, Gian Luca
    Ravindran, Gobinath
    Paul, Sudip
    Laird, John R.
    Garg, Deepak
    Fatemi, Mostafa
    Mohanty, Lopamudra
    Dubey, Arun K.
    Singh, Rajesh
    Fouda, Mostafa M.
    Singh, Narpinder
    Naidu, Subbaram
    Viskovic, Klaudija
    Kukuljan, Melita
    Kalra, Manudeep K.
    Saba, Luca
    Suri, Jasjit S.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [34] COVID-19 lung infection segmentation from chest CT images based on CAPA-ResUNet
    Ma, Lu
    Song, Shuni
    Guo, Liting
    Tan, Wenjun
    Xu, Lisheng
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (01) : 6 - 17
  • [35] Deep-learning characterization and quantification of COVID-19 pneumonia lesions from chest CT images
    Bermejo-Pelaez, D.
    Estepar, R. San Jose
    Fernandez-Velilla, M.
    Miras, C. Palacios
    Madueno, G. Gallardo
    Benegas, M.
    Oroz, M. A. Luengo
    Sellares, J.
    Sanchez, M.
    Peces Barba, G.
    Seijo, L. M.
    Ledesma-Carbayo, M. J.
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [36] Joint Diagnosis of Pneumonia, COVID-19, and Tuberculosis from Chest X-ray Images: A Deep Learning Approach
    Ahmed, Mohammed Salih
    Rahman, Atta
    AlGhamdi, Faris
    AlDakheel, Saleh
    Hakami, Hammam
    AlJumah, Ali
    AlIbrahim, Zuhair
    Youldash, Mustafa
    Alam Khan, Mohammad Aftab
    Basheer Ahmed, Mohammed Imran
    DIAGNOSTICS, 2023, 13 (15)
  • [37] Detection of COVID-19 coronavirus infection in chest X-ray images with deep learning methods
    Shchetinin, E. Yu
    COMPUTER OPTICS, 2022, 46 (06) : 963 - +
  • [38] COVIDetection-Net: A tailored COVID-19 detection from chest radiography images using deep learning
    Elkorany, Ahmed S.
    Elsharkawy, Zeinab F.
    OPTIK, 2021, 231
  • [39] COVLIAS 1.0: Lung Segmentation in COVID-19 Computed Tomography Scans Using Hybrid Deep Learning Artificial Intelligence Models
    Suri, Jasjit S.
    Agarwal, Sushant
    Pathak, Rajesh
    Ketireddy, Vedmanvitha
    Columbu, Marta
    Saba, Luca
    Gupta, Suneet K.
    Faa, Gavino
    Singh, Inder M.
    Turk, Monika
    Chadha, Paramjit S.
    Johri, Amer M.
    Khanna, Narendra N.
    Viskovic, Klaudija
    Mavrogeni, Sophie
    Laird, John R.
    Pareek, Gyan
    Miner, Martin
    Sobel, David W.
    Balestrieri, Antonella
    Sfikakis, Petros P.
    Tsoulfas, George
    Protogerou, Athanasios
    Misra, Durga Prasanna
    Agarwal, Vikas
    Kitas, George D.
    Teji, Jagjit S.
    Al-Maini, Mustafa
    Dhanjil, Surinder K.
    Nicolaides, Andrew
    Sharma, Aditya
    Rathore, Vijay
    Fatemi, Mostafa
    Alizad, Azra
    Krishnan, Pudukode R.
    Frence, Nagy
    Ruzsa, Zoltan
    Gupta, Archna
    Naidu, Subbaram
    Kalra, Mannudeep
    DIAGNOSTICS, 2021, 11 (08)
  • [40] Lung Infection Segmentation for COVID-19 Pneumonia Based on a Cascade Convolutional Network from CT Images
    Ranjbarzadeh, Ramin
    Ghoushchi, Saeid Jafarzadeh
    Bendechache, Malika
    Amirabadi, Amir
    Ab Rahman, Mohd Nizam
    Saadi, Soroush Baseri
    Aghamohammadi, Amirhossein
    Forooshani, Mersedeh Kooshki
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021