A blow-up result for nonlinear generalized heat equation

被引:33
作者
Kbiri Alaoui, M. [1 ]
Messaoudi, S. A. [2 ]
Khenous, H. B. [1 ]
机构
[1] King Khalid Univ, Dept Math, POB 9004, Abha 61321, Saudi Arabia
[2] KFUPM, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
Nonlinear heat equation; Blow up; Sobolev spaces with variable exponents; SPACES; SUBDIFFERENTIALS; OPERATORS; LEBESGUE;
D O I
10.1016/j.camwa.2014.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a nonlinear heat equation with nonlinearities of variableexponent type. We show that any solution with nontrivial initial datum blows up in finite time. We also give a two-dimension numerical example to illustrate our result. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1723 / 1732
页数:10
相关论文
共 16 条
[1]   Regularity results for electrorheological fluids: the stationary case [J].
Acerbi, E ;
Mingione, G .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) :817-822
[2]   Evolution inclusions governed by the difference of two subdifferentials in reflexive Banach spaces [J].
Akagi, G ;
Otani, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 209 (02) :392-415
[3]   Evolution inclusions governed by subdifferentials in reflexive Banach spaces [J].
Akagi, G ;
Otani, M .
JOURNAL OF EVOLUTION EQUATIONS, 2004, 4 (04) :519-541
[5]  
Diening L, 2003, J REINE ANGEW MATH, V563, P197
[6]  
Diening L., 2002, CALDERON ZYGMUND OPE, P120
[7]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[8]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[9]   ELECTRORHEOLOGICAL FLUIDS [J].
HALSEY, TC .
SCIENCE, 1992, 258 (5083) :761-766
[10]  
Hecht F., 2011, FreeFem++ manual