The microfabrication of mold for polymer microfluidic devices with Zr-based metallic glass

被引:3
作者
Zhang, Xiang [1 ,2 ,3 ]
Li, Haotong [1 ,2 ,3 ]
Wang, Zhenxing [1 ,2 ,3 ]
Chen, Xueye [4 ]
Li, Qian [1 ,2 ,3 ]
机构
[1] Zhengzhou Univ, Sch Mech & Engn Sci, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Natl Ctr Int Joint Res Micronanomolding Technol, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ, Key Lab Micromolding Technol Henan Prov, Zhengzhou 450001, Henan, Peoples R China
[4] Liaoning Univ Technol, Coll Mech Engn & Automat, Jinzhou 121001, Peoples R China
基金
对外科技合作项目(国际科技项目);
关键词
Bulk metallic glass; Micro mold insert; Microstructure replication; Polymer micro molding; FABRICATION;
D O I
10.1007/s10544-018-0342-0
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Polymer microfluidic devices are used for many purposes such as microarrays and biochips. The key tool for manufacturing these chips in bulk is an appropriate mold. However, the popular material for making molds is nickel or nickel alloys, which have low stiffness and wear out easily. Zr-based metallic glass is a promising material for micro- or nanomolds because it has good mechanical properties and can be easily formed with high precision. In this paper, Zr-based metallic glass is proposed for use as micromold insert to make poly-(methyl methacrylate) (PMMA) microfluidic devices. Our experiments show that they have good feature integrity and replication quality. Microchannels we fabricated using these replicas did not leak and had good flow performance. Zr-based metallic glass can greatly ease the manufacture of plastic microfluidic devices for research and commercial applications.
引用
收藏
页数:6
相关论文
共 16 条
  • [1] Scum-free patterning of SU-8 resist for electroforming applications
    Agarwal, M
    Gunasekaran, RA
    Coane, P
    Varahramyan, K
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (01) : 130 - 135
  • [2] Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents
    Brown, L
    Koerner, T
    Horton, JH
    Oleschuk, RD
    [J]. LAB ON A CHIP, 2006, 6 (01) : 66 - 73
  • [3] Commercialization of microfluidic point-of-care diagnostic devices
    Chin, Curtis D.
    Linder, Vincent
    Sia, Samuel K.
    [J]. LAB ON A CHIP, 2012, 12 (12) : 2118 - 2134
  • [4] Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices
    Guckenberger, David J.
    de Groot, Theodorus E.
    Wan, Alwin M. D.
    Beebe, David J.
    Young, Edmond W. K.
    [J]. LAB ON A CHIP, 2015, 15 (11) : 2364 - 2378
  • [5] Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices
    Hamad, E. M.
    Bilatto, S. E. R.
    Adly, N. Y.
    Correa, D. S.
    Wolfrum, B.
    Schnoeing, M. J.
    Offenhaeusser, A.
    Yakushenko, A.
    [J]. LAB ON A CHIP, 2016, 16 (01) : 70 - 74
  • [6] Micro injection molding for mass production using LIGA mold inserts
    Katoh, Takanori
    Tokuno, Ryuichi
    Zhang, Yanping
    Abe, Masahiro
    Akita, Katsumi
    Akamatsu, Masaharu
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2008, 14 (9-11): : 1507 - 1514
  • [7] Bulk Metallic Glass: The Smaller the Better
    Kumar, Golden
    Desai, Amish
    Schroers, Jan
    [J]. ADVANCED MATERIALS, 2011, 23 (04) : 461 - 476
  • [8] 3D printed metal molds for hot embossing plastic microfluidic devices
    Lin, Tung-Yi
    Do, Truong
    Kwon, Patrick
    Lillehoj, Peter B.
    [J]. LAB ON A CHIP, 2017, 17 (02) : 241 - 247
  • [9] Fabrication of a microlens array using micro-compression molding with an electroformed mold insert
    Moon, SD
    Lee, N
    Kang, S
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2003, 13 (01) : 98 - 103
  • [10] Overview No.144 - Mechanical behavior of amorphous alloys
    Schuh, Christopher A.
    Hufnagel, Todd C.
    Ramamurty, Upadrasta
    [J]. ACTA MATERIALIA, 2007, 55 (12) : 4067 - 4109