Dynamical Simulation of Integrable and Nonintegrable Models in the Heisenberg Picture

被引:27
|
作者
Muth, Dominik [1 ,2 ,3 ]
Unanyan, Razmik G. [1 ,2 ]
Fleischhauer, Michael [1 ,2 ]
机构
[1] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[2] Tech Univ Kaiserslautern, Forschungszentrum OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Tech Univ Kaiserslautern, Grad Sch Mat Sci Mainz, D-67663 Kaiserslautern, Germany
关键词
ARBITRARY SPIN; XXZ CHAIN;
D O I
10.1103/PhysRevLett.106.077202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The numerical simulation of quantum many-body dynamics is typically limited by the linear growth of entanglement with time. Recently numerical studies have shown that for 1D Bethe-integrable models the simulation of local operators in the Heisenberg picture can be efficient. Using the spin-1/2 XX chain as generic example of an integrable model that can be mapped to free fermions, we provide a simple explanation for this. We show furthermore that the same reduction of complexity applies to operators that have a high-temperature autocorrelation function which decays slower than exponential, i.e., with a power law. Thus efficient simulability may already be implied by a single conservation law as we will illustrate numerically for the spin-1 XXZ model.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Dynamics of correlations. a formalism for both integrable and nonintegrable dynamical systems
    Prigogine, I
    DYNAMICAL SYSTEMS AND IRREVERSIBILITY: PROCEEDINGS OF THE XXI SOLVAY CONFERENCE ON PHYSICS, 2002, 122 : 261 - 275
  • [2] INTEGRABLE VERSUS NONINTEGRABLE SPIN CHAIN IMPURITY MODELS
    SORENSEN, ES
    EGGERT, S
    AFFLECK, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23): : 6757 - 6776
  • [3] Integrable models of coupled Heisenberg chains
    Frahm, H
    Rodenbeck, C
    EUROPHYSICS LETTERS, 1996, 33 (01): : 47 - 52
  • [4] DARK ENERGY IN SOME INTEGRABLE AND NONINTEGRABLE FRW COSMOLOGICAL MODELS
    Esmakhanova, Kuralay
    Myrzakulov, Nurgissa
    Nugmanova, Gulgasyl
    Myrzakulov, Yerlan
    Chechin, Leonid
    Myrzakulov, Ratbay
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (12): : 2419 - 2446
  • [5] Dynamical Topological Quantum Phase Transitions in Nonintegrable Models
    Hagymasi, I
    Hubig, C.
    Legeza, O.
    Schollwoeck, U.
    PHYSICAL REVIEW LETTERS, 2019, 122 (25)
  • [6] Dynamical phase transitions after quenches in nonintegrable models
    Karrasch, C.
    Schuricht, D.
    PHYSICAL REVIEW B, 2013, 87 (19):
  • [7] Probing thermalization in quenched integrable and nonintegrable Fermi-Hubbard models
    Bleicker, Philip
    Stolze, Joachim
    Uhrig, Goetz S.
    PHYSICAL REVIEW A, 2020, 102 (01)
  • [8] An integrable system with a nonintegrable constraint
    Borisov, A. V.
    Mamaev, I. S.
    MATHEMATICAL NOTES, 2006, 80 (1-2) : 127 - 130
  • [9] STABILITY OF INTEGRABLE AND NONINTEGRABLE STRUCTURES
    Munoz, Claudio
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (9-10) : 947 - 996
  • [10] An integrable system with a nonintegrable constraint
    A. V. Borisov
    I. S. Mamaev
    Mathematical Notes, 2006, 80 : 127 - 130