A proof of the Tsygan formality conjecture for chains

被引:41
作者
Shoikhet, B [1 ]
机构
[1] ETH Zentrum, FIM, CH-8092 Zurich, Switzerland
关键词
D O I
10.1016/S0001-8708(02)00023-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the Kontsevich formality L-infinity-morphism U:T-poly(.)(R-d) --> D-poly(.)(R-d) to an L-infinity- morphism of L-infinity-modules over T-poly(.)(R-d), U:C-.(A, A)-->Omega(.)(R-d), A = C-infinity(R-d). The construction of the map U is given in Kontsevich-type integrals. The conjecture that such an L-infinity-morphism exists is due to Boris Tsygan (Formality Conjecture for Chains, math. QA/ 9904132). As an application, we obtain an explicit formula for isomorphism A(*)/[A(*), A(*)]-->A/{A,A} (A(*) is the Kontsevich deformation quantization of the algebra A by a Poisson bivector field, and {,} is the Poisson bracket). We also formulate a conjecture extending the Kontsevich theorem on cup-products to this context. The conjecture implies a generalization of the Duflo formula, and many other things. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:7 / 37
页数:31
相关论文
共 10 条
[1]   The geometry of the master equation and topological quantum field theory [J].
Alexandrov, M ;
Schwarz, A ;
Zaboronsky, O ;
Kontsevich, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (07) :1405-1429
[2]  
CATTANEO AS, MATHQA9902090
[3]  
FEIGIN B, UNPUB GENERALIZATION
[4]  
KONTSEVICH M, MATHQALG9709040
[5]  
MANCHON D, MATHQA0106205
[6]  
SHOIKHET B, MATHQA0012066
[7]  
SHOIKHET B, MATHQA0007080
[8]   Cyclic formality and index theorems - In memory of Moshe Flato [J].
Tamarkin, D ;
Tsygan, B .
LETTERS IN MATHEMATICAL PHYSICS, 2001, 56 (02) :85-97
[9]  
TAMARKIN D, MATHKT0002116
[10]  
TSYGAN B, MATHQA9904132