Using relevance feedback in content-based image metasearch

被引:34
作者
Benitez, AB [1 ]
Beigi, M
Chang, SF
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[2] Columbia Univ, New Media Technol Ctr, New York, NY 10027 USA
[3] Columbia Univ, Digital Lib Project, New York, NY 10027 USA
[4] IBM Corp, TJ Watson Res Ctr, Armonk, NY 10504 USA
关键词
D O I
10.1109/4236.707692
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
MetaSeek is an image metasearch engine developed to explore me query of large, distributed, online visual information systems. The current implementation integrates user feedback into a performance-ranking mechanism.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 9 条
[1]  
BEIGI M, 1998, S EL IM SCI TECHN ST, V6
[2]   Visual information retrieval from large distributed online repositories [J].
Chang, SF ;
Smith, JR ;
Beigi, M ;
Benitez, A .
COMMUNICATIONS OF THE ACM, 1997, 40 (12) :63-71
[3]   Experiences with selecting search engines using metasearch [J].
Dreilinger, D ;
Howe, AE .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1997, 15 (03) :195-222
[4]  
Duda R. O., 1997, Pattern Classification, V2nd
[5]  
FLICKNER M, 1995, IEEE COMPUT, V9, P23
[6]  
SMITH JR, 1996, P ACM C MULT
[7]  
S EL IM SCI TECHN ST
[8]  
S EL IM SCI TECHN ST
[9]  
[No title captured]