Circular are approximation by quintic polynomial curves

被引:39
作者
Fang, L [1 ]
机构
[1] Unigraph Solut Inc, Cypress, CA 90630 USA
关键词
circular are approximation; quintic polynomial; Bezier curves; geometric continuity;
D O I
10.1016/S0167-8396(98)00019-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents methods for approximating circular arcs using quintic polynomial curves. Different boundary conditions are considered in the approximation methods, thus resulting approximation curves with G(2), G(3), Or G(4) continuities at the circular are's ends. The resulting approximation radial errors are generally very small and converge at the eighth or tenth power of the circular are's angular span. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:843 / 861
页数:19
相关论文
共 8 条
[1]  
Bezier P., 1986, The mathematical basis of the UNISURF CAD system
[2]   HOW MANY WAYS CAN YOU DRAW A CIRCLE [J].
BLINN, JF .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1987, 7 (08) :39-44
[3]  
de Boor C., 1987, Computer-Aided Geometric Design, V4, P269, DOI 10.1016/0167-8396(87)90002-1
[4]  
Dokken T., 1990, Computer-Aided Geometric Design, V7, P33, DOI 10.1016/0167-8396(90)90019-N
[5]   An O(h(2n)) Hermite approximation for conic sections [J].
Floater, MS .
COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (02) :135-151
[6]   Approximation of circular arcs by cubic polynomials [J].
Goldapp, Michael .
Computer Aided Geometric Design, 1991, 8 (03) :227-238
[7]  
GOSSLING TH, 1976, P WORLD C THEORY MAC, P305
[8]  
PETERS GJ, 1974, COMPUTER AIDED GEOME