Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water

被引:36
作者
Anastopoulos, Ioannis [1 ]
Ighalo, Joshua O. [2 ,3 ]
Igwegbe, Chinenye Adaobi [2 ]
Giannakoudakis, Dimitrios A. [4 ]
Triantafyllidis, Konstantinos S. [4 ]
Pashalidis, Ioannis [5 ]
Kalderis, Dimitrios [1 ]
机构
[1] Hellen Mediterranean Univ, Sch Engn, Dept Elect Engn, Khania 73100, Crete, Greece
[2] Nnamdi Azikiwe Univ, Dept Chem Engn, PMB 5025, Awka, Nigeria
[3] Univ Ilorin, Dept Chem Engn, PMB 1515, Ilorin, Nigeria
[4] Aristotle Univ Thessaloniki, Dept Chem, Univ Campus, Thessaloniki 54124, Greece
[5] Univ Cyprus, Lab Radioanalyt & Environm Chem, Dept Chem, POB 20537, CY-1678 Nicosia, Cyprus
关键词
Sunflower biomass; Sunflower residues; Adsorption; Potentially toxic elements; Heavy metals; Equilibrium modeling; COMMERCIAL ACTIVATED CARBON; AQUEOUS-SOLUTIONS; HEAVY-METALS; THERMODYNAMIC PARAMETERS; ADSORPTION EQUILIBRIUM; AGRICULTURAL WASTE; BATCH BIOSORPTION; COPPER IONS; SEED HUSK; DYES;
D O I
10.1016/j.molliq.2021.117540
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, adsorption is assumed to be one of the most widely used and efficient, user-friendly, and low-cost (waste) water purification technique to remove a wide range of pollutants. From that scope, commercial activated carbons, are commonly used as adsorbents. However, due to some crucial disadvantages (e.g. high cost and incomplete regeneration) their use is limited. Agricultural waste/biomass/residues have attracted interest as alternative and efficient adsorbents because they can be utilized without any or after chemical treatment, or can be used as precursors to fabricate activated carbon or biochar. Moreover, agricultural wastes are renewable, inexpensive and abundantly available, essentially nontoxic, and environmentally friendly, thus satisfying the concept of Green or Sustainable Chemistry. This review article emphasizes on the utilization of sunflower-derived adsorbents to remove potentially toxic elements (PTEs) from aqueous media. The effect of crucial adsorption parameters (effect of initial pH, contact time etc.) is discussed in detail. Data obtained from adsorption experiments, thermodynamic and kinetic modeling, and desorption studies are presented and analyzed. The maximum adsorption capacity values obtained for sunflower adsorbents vary between 3.28 and 252.52 mg/g for PTEs, indicating that these materials could be satisfactorily used as alternative adsorbents. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Heavy Metals Removal from Water by Efficient Adsorbents
    Zaimee, Muhammad Zaim Anaqi
    Sarjadi, Mohd Sani
    Rahman, Md Lutfor
    WATER, 2021, 13 (19)
  • [2] Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water
    Repo, Eveliina
    Warchol, Jolanta K.
    Bhatnagar, Amit
    Mudhoo, Ackmez
    Sillanpaa, Mika
    WATER RESEARCH, 2013, 47 (14) : 4812 - 4832
  • [4] Performance evaluation of hybrid inorganic/organic adsorbents in removal and preconcentration of heavy metals from drinking and industrial waste water
    Mahmoud, Mohamed E.
    Hafez, Osarna F.
    Alrefaay, Ahmed
    Osman, Maher M.
    DESALINATION, 2010, 253 (1-3) : 9 - 15
  • [5] A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater
    Anastopoulos, Ioannis
    Bhatnagar, Amit
    Hameed, Bassim H.
    Ok, Yong Sik
    Omirou, Michalis
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 240 : 179 - 188
  • [6] Eucalyptus-based materials as adsorbents for heavy metals and dyes removal from (waste)waters
    Anastopoulos, Ioannis
    Ahmed, Muthanna J.
    Hummadi, Esam H.
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 356
  • [7] Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal
    Noor, Noraini Mohamed
    Othman, Raihan
    Mubarak, N. M.
    Abdullah, Ezzat Chan
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 78 : 168 - 177
  • [8] Surface Modified Silicon Dioxide Based Functional Adsorbents Derived From Waste Sand for the Removal of Toxic Pollutants From Water
    Garud, Harshada B. B.
    Jadhav, Sushilkumar A. A.
    Jadhav, Sayali P. P.
    Suryawanshi, Pradnya S. S.
    Kalantre, Vilas A. A.
    Burungale, Shivaji H. H.
    Delekar, Sagar D. D.
    Patil, Pramod S. S.
    SILICON, 2023, 15 (11) : 4569 - 4584
  • [9] Biomass-Derived Adsorbents for Dye and Heavy Metal Removal from Wastewater
    Ali, Kashir
    Javaid, Muhammad Ussama
    Ali, Zaman
    Zaghum, Muhammad Junaid
    ADSORPTION SCIENCE & TECHNOLOGY, 2021, 2021
  • [10] Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal
    Ho, Shih-Hsin
    Zhu, Shishu
    Chang, Jo-Shu
    BIORESOURCE TECHNOLOGY, 2017, 246 : 123 - 134