Refined approach for modelling strength enhancement of FRP-confined concrete

被引:11
|
作者
Al Abadi, Haider [1 ]
El-Naga, Hossam Abo [1 ]
Shaia, Hussein [2 ]
Paton-Cole, Vidal [1 ]
机构
[1] La Trobe Univ, Dept Engn, Bundoora, Vic 3086, Australia
[2] Thi Qar Univ, Coll Engn, Nasiriyah, Iraq
关键词
Concrete cylinders; Compressive strength; Fibre reinforce polymer; Confinement; Strengthening; AXIAL COMPRESSIVE BEHAVIOR; FIBER-REINFORCED POLYMERS; STRESS-STRAIN MODEL; CIRCULAR CONCRETE; UNIAXIAL COMPRESSION; STRUCTURAL BEHAVIOR; JACKETED CONCRETE; COMPOSITE JACKETS; CFRP SHEETS; COLUMNS;
D O I
10.1016/j.conbuildmat.2016.04.119
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The application of FRP-confined concrete is recognized to be an effective solution to increase the axial strength of many new and existing concrete columns. A number of experimental investigations and developments for numerical models have been established to understand the strength enhancement behaviour of the FRP-concrete confined section. This paper aims to investigate the influence of the confinement parameters including the concrete strength and the confining pressure on the strength enhancement of FRP-confined concrete specimens. Investigated data were collected from experimental works performed by the authors as well as results surveyed from state-of-the-art papers carefully selected and reviewed to provide an overview and in-depth knowledge in the development of this strengthening technique. Utilizing 927 experimental data from 127 papers from the literature, a 3 dimensional graph presentation (surface chart) have been utilized to investigate the strength enhancement of the FRP-confined concrete. This new graphing format assisted in demonstrating the non-linear influences for each of the parameters investigated on the confinement parameters on the strength enhancement of FRP-confined section. Unlike the conventional 2-dimensional plot of the confined concrete strength versus the confining pressure (both normalized by the unconfined concrete strength), the 3-dimensional graphing approach introduced in this paper is found to provide more information about the strength enhancement. Utilizing a Gauss surface fitting function, a refined enhancement ratio expression incorporating the individual influence of the confinement parameters is proposed in the paper and experimentally evaluated. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:152 / 174
页数:23
相关论文
empty
未找到相关数据