Two-dimensional multi-snapshot Newtonized orthogonal matching pursuit for DOA estimation

被引:13
作者
Han, Lin [1 ]
Liu, Xingchuan [2 ]
Zhang, Ning [3 ,4 ]
Wu, Sheng [5 ]
Zhu, Jiang [6 ,7 ]
Xu, Zhiwei [6 ,7 ]
机构
[1] China State Shipbldg Corp Ltd, 715 Res & Dev Ind Corp, Hangzhou 310000, Peoples R China
[2] Elect Technol Grp Corp, Smart City Res Inst China, Shenzhen 518038, Peoples R China
[3] Nanjing Marine Radar Inst, Nanjing 211153, Peoples R China
[4] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[5] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[6] Zhejiang Univ, Ocean Coll, Engn Res Ctr Ocean Sensing Technol & Equipment, Minist Educ, Hangzhou, Peoples R China
[7] Nanjing Univ Aeronaut & Astronaut, Key Lab Dynam Cognit Syst Electromagnet Spectrum, Minist Ind & Informat Technol, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-dimensional direction of arrival (2D-DOA); Newtonized orthogonal matching pursuit (NOMP); Compressed sensing (CS); Model order estimation; Convergence; LINE SPECTRUM ESTIMATION; ENHANCEMENT; MUSIC;
D O I
10.1016/j.dsp.2021.103313
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Estimating the azimuth and elevation angles of targets is referred to as two-dimensional direction of arrival (2D-DOA) estimation problem, which is of vital importance in array signal processing and multiple input multiple output (MIMO) millimeter wave communication fields. Inspired by the Newtonized orthogonal matching pursuit (NOMP) for line spectrum estimation (LSE), this paper proposes the two-dimensional multi-snapshot NOMP (2D-MNOMP) to deal with the 2D-DOA estimation. Specifically, two-dimensional fast Fourier transform (FFT) is utilized to significantly reduce the computation complexity, and a Newton refinement step and feedback strategy are proposed to improve performance of DOA estimation. Based on the generalized likelihood ratio test (GLRT), the stopping criterion is established. The near-optimal performance of 2D-MNOMP is also demonstrated by comparing against other methods and the Cramer-Rao bound (CRB), both in terms of simulations and real data. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 24 条
[1]   Approximation and learning by greedy algorithms [J].
Barron, Andrew R. ;
Cohen, Albert ;
Dahmen, Wolfgang ;
DeVore, Ronald A. .
ANNALS OF STATISTICS, 2008, 36 (01) :64-94
[2]   Atomic Norm Denoising With Applications to Line Spectral Estimation [J].
Bhaskar, Badri Narayan ;
Tang, Gongguo ;
Recht, Benjamin .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (23) :5987-5999
[3]   The Convex Geometry of Linear Inverse Problems [J].
Chandrasekaran, Venkat ;
Recht, Benjamin ;
Parrilo, Pablo A. ;
Willsky, Alan S. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (06) :805-849
[4]   Sensitivity to Basis Mismatch in Compressed Sensing [J].
Chi, Yuejie ;
Scharf, Louis L. ;
Pezeshki, Ali ;
Calderbank, A. Robert .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (05) :2182-2195
[5]   Spectral compressive sensing [J].
Duarte, Marco F. ;
Baraniuk, Richard G. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (01) :111-129
[6]  
Eldar Y., 2012, Compressed Sensing: Theory and Applications
[7]  
HAARDT M, 1995, INT CONF ACOUST SPEE, P2096, DOI 10.1109/ICASSP.1995.478488
[8]   A PENCIL-MUSIC ALGORITHM FOR FINDING 2-DIMENSIONAL ANGLES AND POLARIZATIONS USING CROSSED DIPOLES [J].
HUA, YB .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (03) :370-376
[9]   ESTIMATING 2-DIMENSIONAL FREQUENCIES BY MATRIX ENHANCEMENT AND MATRIX PENCIL [J].
HUA, YB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (09) :2267-2280
[10]  
Johnson D. H., 1993, ARRAY SIGNAL PROCESS, P59