Langevin theory of fluctuations in the discrete Boltzmann equation

被引:20
作者
Gross, M. [1 ]
Cates, M. E. [2 ]
Varnik, F. [1 ,3 ]
Adhikari, R. [4 ]
机构
[1] Ruhr Univ Bochum, ICAMS, D-44801 Bochum, Germany
[2] Univ Edinburgh, Sch Phys, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
[4] Inst Math Sci, Madras 600113, Tamil Nadu, India
基金
英国工程与自然科学研究理事会;
关键词
kinetic theory of gases and liquids; lattice Boltzmann methods; computational fluid dynamics; LIQUID-VAPOR INTERFACE; LATTICE-BOLTZMANN; STATISTICAL-MECHANICS; NONEQUILIBRIUM THERMODYNAMICS; STATIONARY STATES; CAPILLARY WAVES; GAS; SIMULATIONS; HYDRODYNAMICS; DERIVATION;
D O I
10.1088/1742-5468/2011/03/P03030
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The discrete Boltzmann equation for both the ideal and a nonideal fluid is extended by adding Langevin noise terms in order to incorporate the effects of thermal fluctuations. After casting the fluctuating discrete Boltzmann equation in a form appropriate to the Onsager-Machlup theory of linear fluctuations, the statistical properties of the noise are determined by invoking a fluctuation-dissipation theorem at the kinetic level. By integrating the fluctuating discrete Boltzmann equation, a fluctuating lattice Boltzmann equation is obtained, which provides an efficient way to solve the equations of fluctuating hydrodynamics for ideal and non-ideal fluids. Application of the framework to a generic force-based non-ideal fluid model leads to ideal gas-type thermal noise. Simulation results indicate proper thermalization of all degrees of freedom.
引用
收藏
页数:34
相关论文
共 79 条
[1]   Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation [J].
Abe, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (01) :241-246
[2]  
ABRIKOSOV AA, 1958, SOV PHYS JETP-USSR, V7, P135
[3]   Fluctuating lattice Boltzmann [J].
Adhikari, R ;
Stratford, K ;
Cates, ME ;
Wagner, AJ .
EUROPHYSICS LETTERS, 2005, 71 (03) :473-479
[4]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[5]  
[Anonymous], PROG ASTRONAUT AERON
[6]  
Barrat J.-L., 2003, Basic Concepts for Simple and Complex Liquids
[7]   HYDRODYNAMIC BEHAVIOR OF LATTICE BOLTZMANN AND LATTICE BHATNAGAR-GROSS-KROOK MODELS [J].
BEHREND, O ;
HARRIS, R ;
WARREN, PB .
PHYSICAL REVIEW E, 1994, 50 (06) :4586-4595
[8]   Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations [J].
Bell, John B. ;
Garcia, Alejandro L. ;
Williams, Sarah A. .
PHYSICAL REVIEW E, 2007, 76 (01)
[9]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[10]   BOLTZMANN-LANGEVIN EQUATION AND HYDRODYNAMIC FLUCTUATIONS [J].
BIXON, M ;
SWANZIG, R .
PHYSICAL REVIEW, 1969, 187 (01) :267-&