Anti-thermal-quenching red-emitting phosphors based on lanthanide doped negative-thermal-expansion (NTE) hosts

被引:30
作者
Wang, Wei [1 ]
Fu, Meiqian [1 ]
Liu, Shuwen [1 ]
Zhang, Xinyang [1 ]
Wei, Yi [1 ]
Li, Guogang [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Engn Res Ctr Nanogeomat, Minist Educ, 388 Lumo Rd, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Anti-thermal-quenching; Natigative thermal expansion; Red phosphors; White light emitting diodes; CATION SUBSTITUTION; COLOR; PHOTOLUMINESCENCE; LUMINESCENCE; EFFICIENCY; STABILITY; DISCOVERY; PROGRESS; ORIGINS;
D O I
10.1016/j.jlumin.2021.118536
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Thermal quenching (TQ) is still a critical challenge for phosphor materials (especially for red phosphors) in white light emitting diodes lighting applications. Herein, we put forward an effective method to design anti-TQ red emission of Eu3+ in the unique negative-thermal-expansion (NTE) orthorhombic Sc2(Mo,W)3O12 hosts. Surprisingly, the emission intensity of Sc2Mo3O12:Eu3+ (SMO:Eu3+) is enhanced to 150% of initial intensity at 150 degrees C and 123% of initial intensity at 200 degrees C under blue light excitation. Similarly, the Sc2W3O12:Eu3+ (SWO: Eu3+) also could exhibit 123% of initial intensity at 150 degrees C and 106% at 200 degrees C. According to the variabletemperature X-ray diffraction and photoluminescence results, the unique anti-TQ phenomenon should be ascribed to the improved structural rigidity induced by the contraction of cell volumes and energy transfer from traps. By employing a 380 nm UV chip, the as-fabricated white LEDs using Sc2Mo3O12:Eu3+ phosphor presents a warm white light with CIE color coordinates (0.3112, 0.3198), low corresponding color temperature (CCT = 5045 K), and high color rendering index (CRI = 90.6). This work initiates a novel strategy to construct anti-TQ red-emitting phosphors for multiple practical optical applications.
引用
收藏
页数:11
相关论文
共 66 条
[1]   THERMAL QUENCHING OF CHARACTERISTIC FLUORESCENCE [J].
BLASSE, G .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (08) :3529-&
[2]  
Blasse G., 1994, LUMINESCENT MAT, P41
[3]   Tunable thermal expansion in framework materials through redox intercalation [J].
Chen, Jun ;
Gao, Qilong ;
Sanson, Andrea ;
Jiang, Xingxing ;
Huang, Qingzhen ;
Carnera, Alberto ;
Rodriguez, Clara Guglieri ;
Olivi, Luca ;
Wang, Lei ;
Hu, Lei ;
Lin, Kun ;
Ren, Yang ;
Lin, Zheshuai ;
Wang, Cong ;
Gu, Lin ;
Deng, Jinxia ;
Attfield, J. Paul ;
Xing, Xianran .
NATURE COMMUNICATIONS, 2017, 8
[4]   Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications [J].
Chen, Jun ;
Hu, Lei ;
Deng, Jinxia ;
Xing, Xianran .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (11) :3522-3567
[5]   Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs: non-concentration quenching and negative thermal expansion [J].
Dang, Peipei ;
Li, Guogang ;
Yun, Xiaohan ;
Zhang, Qianqian ;
Liu, Dongjie ;
Lian, Hongzhou ;
Shang, Mengmeng ;
Lin, Jun .
LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
[6]   Exceptional negative thermal expansion in isoreticular metal-organic frameworks [J].
Dubbeldam, David ;
Walton, Krista S. ;
Ellis, Donald E. ;
Snurr, Randall Q. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (24) :4496-4499
[7]   Alkali Lithosilicates: Renaissance of a Reputable Substance Class with Surprising Luminescence Properties [J].
Dutzler, Daniel ;
Seibald, Markus ;
Baumann, Dominik ;
Huppertz, Hubert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (41) :13676-13680
[8]   Structural phase transitions and negative thermal expansion in Sc2(MoO4)3 [J].
Evans, JSO ;
Mary, TA .
INTERNATIONAL JOURNAL OF INORGANIC MATERIALS, 2000, 2 (01) :143-151
[9]   Negative thermal expansion in ZrW2O8 and HfW2O8 [J].
Evans, JSO ;
Mary, TA ;
Vogt, T ;
Subramanian, MA ;
Sleight, AW .
CHEMISTRY OF MATERIALS, 1996, 8 (12) :2809-2823
[10]   Negative thermal expansion in Sc2(WO4)3 [J].
Evans, JSO ;
Mary, TA ;
Sleight, AW .
JOURNAL OF SOLID STATE CHEMISTRY, 1998, 137 (01) :148-160