Maximum principles and gradient Ricci solitons

被引:18
作者
Fernandez-Lopez, Manuel [1 ]
Garcia-Rio, Eduardo [1 ]
机构
[1] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
关键词
Gradient Ricci soliton; Omori-Yau maximum principle; Stochastically completeness; f-Laplacian;
D O I
10.1016/j.jde.2011.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the Omori-Yau maximum principle holds true on complete gradient shrinking Ricci solitons both for the Laplacian and the f-Laplacian. As an application, curvature estimates and rigidity results for shrinking Ricci solitons are obtained. Furthermore, applications of maximum principles are also given in the steady and expanding situations. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 2006, HAMILTONS RICCI FLOW
[2]  
[Anonymous], 2010, RECENT ADV GEOMETRIC
[3]  
Cao H.-D., 2011, ADV LECT MATH ALM, V17, P227
[4]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[5]  
Chen BL, 2009, J DIFFER GEOM, V82, P363
[6]   Ricci solitons: the equation point of view [J].
Eminenti, Manolo ;
La Nave, Gabriele ;
Mantegazza, Carlo .
MANUSCRIPTA MATHEMATICA, 2008, 127 (03) :345-367
[7]   Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds [J].
Grigor'yan, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (02) :135-249
[9]   Noncompact shrinking four solitons with nonnegative curvature [J].
Naber, Aaron .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 645 :125-153
[10]   ISOMETRIC IMMERSIONS OF RIEMANNIAN MANIFOLDS [J].
OMORI, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1967, 19 (02) :205-+