MIXED FORMULATION, APPROXIMATION AND DECOUPLING ALGORITHM FOR A PENALIZED NEMATIC LIQUID CRYSTALS MODEL

被引:29
作者
Girault, V. [1 ]
Guillen-Gonzalez, F.
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris, France
关键词
Nematic liquid crystal; Ginzburg-Landau penalization; mixed formulation; finite element method; convergence; stability; error estimates; decoupling algorithm; ERICKSEN-LESLIE MODEL; STOKES; REGULARITY; SYSTEMS; FLOW;
D O I
10.1090/S0025-5718-2010-02429-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear fully discrete mixed scheme, using C-0 finite elements in space and a semi-implicit Euler scheme in time, is considered for solving a penalized nematic liquid crystal model (of the Ginzburg-Landau type). We prove: 1) unconditional stability and convergence towards weak solutions, and 2) first-order optimal error estimates for regular solutions (but without imposing the well-known global compatibility condition for the initial pressure in the Navier-Stokes framework). These results are valid in a general connected polygon or in a Lipschitz polyhedral domain (without any constraints on its angles). Finally, since the scheme couples the unknowns, we propose several algorithms for decoupling the computation of these unknowns and establish their rates of convergence in convex domains when the mesh size is sufficiently small compared to the time step.
引用
收藏
页码:781 / 819
页数:39
相关论文
共 37 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
[Anonymous], SCM
[3]  
[Anonymous], 2001, ADV NUMERICAL MATH
[4]  
[Anonymous], 1984, CALCOLO, DOI 10.1007/bf02576171
[5]  
[Anonymous], 1968, TRAVAUX RECHERCHES M
[6]  
[Anonymous], 1974, RAIRO ANAL NUMER
[7]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[8]   Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow [J].
Becker, Roland ;
Feng, Xiaobing ;
Prohl, Andreas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) :1704-1731
[9]   ASYMPTOTICS FOR THE MINIMIZATION OF A GINZBURG-LANDAU FUNCTIONAL [J].
BETHUEL, F ;
BREZIS, H ;
HELEIN, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :123-148
[10]  
BRENNER S., 1994, TAM, V15