Non-stationary quantum walks on the cycle

被引:9
作者
D'Alessandro, Domenico [1 ]
Parlangeli, Gianfranco [2 ]
Albertini, Francesca [3 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Univ Salento, Dipartimento Ingn Innovazione, Lecce, Italy
[3] Univ Padua, Dipartimento Matemat Pura Appl, Padua, Italy
基金
美国国家科学基金会;
关键词
D O I
10.1088/1751-8113/40/48/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider quantum walks on the cycle in the non-stationary case where the 'coin' operation is allowed to change at each time step. We characterize, in algebraic terms, the set of possible state transfers and prove that, as opposed to the stationary case, the associate probability distribution may converge to a uniform distribution among the nodes of the associated graph.
引用
收藏
页码:14447 / 14455
页数:9
相关论文
共 19 条
[11]  
KENDON V, 2006, QUANTPH0606016V3
[12]   A path integral approach for disordered quantum walks in one dimension [J].
Konno, N .
FLUCTUATION AND NOISE LETTERS, 2005, 5 (04) :L529-L537
[13]   Quantum walks in higher dimensions [J].
Mackay, TD ;
Bartlett, SD ;
Stephenson, LT ;
Sanders, BC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (12) :2745-2753
[14]  
NEUENSCHWANDER D, 1996, PROBABILITIES HEISEN, V1630
[15]   Aperiodic quantum random walks [J].
Ribeiro, P ;
Milman, P ;
Mosseri, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (19) :190503-1
[16]  
SAGLE A, 1973, INTRO LIE GROUPS LIE
[17]   One-dimensional quantum walk with unitary noise [J].
Shapira, D ;
Biham, O ;
Bracken, AJ ;
Hackett, M .
PHYSICAL REVIEW A, 2003, 68 (06)
[18]  
Sinclair A., 1993, Algorithms for Random Generation and Counting: A Markov Chain Approach
[19]   Controlling discrete quantum walks: coins and initial states [J].
Tregenna, B ;
Flanagan, W ;
Maile, R ;
Kendon, V .
NEW JOURNAL OF PHYSICS, 2003, 5 :83.1-83.19