Recurrence Criteria for Generalized Dirichlet Forms

被引:7
作者
Gim, Minjung [1 ]
Trutnau, Gerald [2 ]
机构
[1] Natl Inst Math Sci, 70 Yuseong Daero 1689 Beon Gil, Daejeon 34047, South Korea
[2] Seoul Natl Univ, Res Inst Math, Dept Math Sci, 599 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Dirichlet forms; Recurrence; Transience; Markov semigroups; BROWNIAN-MOTION; SPACES; CONSERVATIVENESS;
D O I
10.1007/s10959-017-0779-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop sufficient analytic conditions for recurrence and transience of non-sectorial perturbations of possibly non-symmetric Dirichlet forms on a general state space. These form an important subclass of generalized Dirichlet forms which were introduced in Stannat (Ann Scuola Norm Sup Pisa Cl Sci (4) 28(1): 99-140, 1999). In case there exists an associated process, we show how the analytic conditions imply recurrence and transience in the classical probabilistic sense. As an application, we consider a generalized Dirichlet form given on a closed or open subset of R-d which is given as a divergence free first-order perturbation of a non-symmetric energy form. Then, using volume growth conditions of the sectorial and non-sectorial first-order part, we derive an explicit criterion for recurrence. Moreover, we present concrete examples with applications to Muckenhoupt weights and counterexamples. The counterexamples show that the non-sectorial case differs qualitatively from the symmetric or non-symmetric sectorial case. Namely, we make the observation that one of the main criteria for recurrence in these cases fails to be true for generalized Dirichlet forms.
引用
收藏
页码:2129 / 2166
页数:38
相关论文
共 28 条
[1]  
[Anonymous], 2000, LECT NOTES MATH
[2]  
[Anonymous], CAMBRIDGE STUDIES AD
[3]  
Beznea L., ARXIV14096492
[4]   CRITERIA FOR RECURRENCE AND EXISTENCE OF INVARIANT MEASURES FOR MULTIDIMENSIONAL DIFFUSIONS [J].
BHATTACHARYA, RN .
ANNALS OF PROBABILITY, 1978, 6 (04) :541-553
[5]   Singular dissipative stochastic equations in Hilbert spaces [J].
Da Prato, G ;
Röckner, M .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (02) :261-303
[6]  
Fukushima M., 2007, BIEL IGK SEM
[7]  
FUKUSHIMA M., 2011, DIRICHLET FORMS SYMM, V2nd
[8]  
Getoor R. K., 1980, Lecture Notes in Math., V784, P397
[9]  
Gim M., 2013, MATH REPORTS, V15(65)
[10]  
Hasminskii RZ., 1960, Teor. Verojatnost. i Primenen, V5, P196, DOI DOI 10.1137/1105016