High order methods for weakly singular integral equations with nonsmooth input functions

被引:83
作者
Monegato, G [1 ]
Scuderi, L [1 ]
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
D O I
10.1090/S0025-5718-98-01005-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To solve one-dimensional linear weakly singular integral equations on bounded intervals, with input functions which may be smooth or not, we propose to introduce first a simple smoothing change of variable, and then to apply classical numerical methods such as product-integration and collocation based on global polynomial approximations. The advantage of this approach is that the order of the methods can be arbitrarily high and that the associated linear systems one has to solve are very well-conditioned.
引用
收藏
页码:1493 / 1515
页数:23
相关论文
共 28 条
[1]  
ABACI C, 1994, SCI DESK LIB DOCUMEN
[2]  
[Anonymous], J INTEGRAL EQUATIONS
[3]  
[Anonymous], 1966, APPROXIMATION FUNCTI
[4]  
Atkinson K.E., 1976, SURVEY NUMERICAL MET
[5]  
CRISCUOLO G, 1990, MATH COMPUT, V55, P213, DOI 10.1090/S0025-5718-1990-1023045-1
[6]   AN ALGORITHM FOR THE APPROXIMATE SOLUTION OF INTEGRAL-EQUATIONS OF MELLIN TYPE [J].
ELLIOTT, D ;
PROSSDORF, S .
NUMERISCHE MATHEMATIK, 1995, 70 (04) :427-452
[7]   AN OPTIMAL ORDER COLLOCATION METHOD FOR FIRST KIND BOUNDARY INTEGRAL-EQUATIONS ON POLYGONS [J].
ELSCHNER, J ;
GRAHAM, IG .
NUMERISCHE MATHEMATIK, 1995, 70 (01) :1-31
[8]  
GRAHAM IG, 1982, MATH COMPUT, V39, P519, DOI 10.1090/S0025-5718-1982-0669644-3
[9]  
GRAHAM IG, 1982, J INTEGRAL EQUAT, V4, P1
[10]  
J├a┬Argens K., 1982, LINEAR INTEGRAL OPER