Analytic tadpole coefficients of one-loop integrals

被引:16
|
作者
Feng, Bo [1 ,2 ,3 ,5 ]
Li, Tingfei [1 ]
Li, Xiaodi [4 ,5 ]
机构
[1] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[3] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
[4] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
[5] Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China
关键词
Scattering Amplitudes; Renormalization Regularization and Renormalons; AMPLITUDES; UNITARITY;
D O I
10.1007/JHEP09(2021)081
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
One remaining problem of unitarity cut method for one-loop integral reduction is that tadpole coefficients can not be straightforward obtained through this way. In this paper, we reconsider the problem by applying differential operators over an auxiliary vector R. Using differential operators, we establish the corresponding differential equations for tadpole coefficients at the first step. Then using the tensor structure of tadpole coefficients, we transform the differential equations to the recurrence relations for undetermined tensor coefficients. These recurrence relations can be solved easily by iteration and we can obtain analytic expressions of tadpole coefficients for arbitrary one-loop integrals.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Direct extraction of one-loop integral coefficients
    Forde, Darren
    PHYSICAL REVIEW D, 2007, 75 (12):
  • [32] ONE-LOOP INTEGRALS IN AXIAL-TYPE GAUGES
    KONETSCHNY, W
    PHYSICAL REVIEW D, 1983, 28 (02): : 354 - 359
  • [33] Reduction with degenerate Gram matrix for one-loop integrals
    Feng, Bo
    Hu, Chang
    Li, Tingfei
    Song, Yuekai
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [34] Recursive numerical calculus of one-loop tensor integrals
    del Aguila, F
    Pittau, R
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (07):
  • [35] Scalar one-loop 4-point integrals
    Denner, A.
    Dittmaier, S.
    NUCLEAR PHYSICS B, 2011, 844 (02) : 199 - 242
  • [36] Automated computation of one-loop integrals in massless theories
    van Hameren, A
    Vollinga, J
    Weinzierl, S
    EUROPEAN PHYSICAL JOURNAL C, 2005, 41 (03): : 361 - 375
  • [37] General ε-representation for scalar one-loop Feynman integrals
    Bluemlein, Johannes
    Phan, Khiem Hong
    Riemann, Tord
    NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2016, 270 : 227 - 231
  • [38] QCDLoop: A comprehensive framework for one-loop scalar integrals
    Carrazza, Stefano
    Ellis, R. Keith
    Zanderighi, Giulia
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 209 : 134 - 143
  • [39] Double parton scattering singularity in one-loop integrals
    Gaunt, Jonathan R.
    Stirling, W. James
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (06):
  • [40] DIFFERENTIAL EQUATIONS FOR ONE-LOOP GENERALIZED FEYNMAN INTEGRALS
    BARUCCHI, G
    PONZANO, G
    JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (03) : 396 - 401