Weather and population based forecasting of novel COVID-19 using deep learning approaches

被引:7
|
作者
Doni, A. Ronald [1 ]
Praba, T. Sasi [1 ]
Murugan, S. [1 ]
机构
[1] Sathyabama Inst Sci & Technol, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
Concurrent neural network (CNN); Recurrent neural network (RNN); Bidirectional RNN (BRNN); Long short-term memory (LSTM) and bidirectional LSTM (BLSTM); COVID-19; Deep learning; HUMIDITY; TEMPERATURE; MODEL;
D O I
10.1007/s13198-021-01272-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spread of novel corona virus across the globe has a significant impact on various stake holders and posting a major challenge to the research community. Government has taken several measures for maintaining social distance and containment of disease, but still it is not a sufficient for the developing countries like India where the level of understanding the issue is deprived and hence it is a major challenge to the Health Care professionals. Therefore, it is mandatory that a prediction of the number of possible cases enables the preparedness of the Government and the Hospitals in resolving the issues and to take measures in controlling the spread of the disease Series. Deep learning model has been built by considering the features of weather and COVID-19 data (recovered, infected and deceased) for predicting the number of cases expected in India. The model is built on Concurrent Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional RNN (BRNN), Long Short-Term Memory (LSTM) and Bidirectional LSTM (BLSTM) based on the daily weather and COVID-19 data collected from Indian subcontinent. The results revealed that the algorithm BRNN yields a better prediction model when compared with the other models.
引用
收藏
页码:100 / 110
页数:11
相关论文
共 50 条
  • [31] A novel approach for COVID-19 Infection forecasting based on multi-source deep transfer learning
    Garg, Sonakshi
    Kumar, Sandeep
    Muhuri, Pranab K.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [32] Machine Learning and Deep Learning Approaches to Analyze and Detect COVID-19: A Review
    Aishwarya T.
    Ravi Kumar V.
    SN Computer Science, 2021, 2 (3)
  • [33] Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches
    Malki, Zohair
    Atlam, El-Sayed
    Hassanien, Aboul Ella
    Dagnew, Guesh
    Elhosseini, Mostafa A.
    Gad, Ibrahim
    CHAOS SOLITONS & FRACTALS, 2020, 138
  • [34] COVID-19 diagnosis system by deep learning approaches
    Bhuyan, Hemanta Kumar
    Chakraborty, Chinmay
    Shelke, Yogesh
    Pani, Suvendu Kumar
    EXPERT SYSTEMS, 2022, 39 (03)
  • [35] A Systematic Review of Multimodal Deep Learning Approaches for COVID-19 Diagnosis
    Capuozzo, Salvatore
    Sansone, Carlo
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT II, 2024, 14366 : 140 - 151
  • [36] Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect
    Sajadi, Seyed Mehrzad Asaad
    Khodaee, Pouya
    Hajizadeh, Ehsan
    Farhadi, Sabri
    Dastgoshade, Sohaib
    Du, Bo
    ENERGIES, 2022, 15 (21)
  • [37] Deep Spatiotemporal Model for COVID-19 Forecasting
    Munoz-Organero, Mario
    Queipo-Alvarez, Paula
    SENSORS, 2022, 22 (09)
  • [38] Covid-19 analysis by using machine and deep learning
    Yadav D.
    Maheshwari H.
    Chandra U.
    Sharma A.
    Studies in Big Data, 2020, 80 : 31 - 63
  • [39] COVID-19 Automatic Detection Using Deep Learning
    Sanajalwe, Yousef
    Anbar, Mohammed
    Al-E'mari, Salam
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 39 (01): : 15 - 35
  • [40] Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment
    Jamshidi, Mohammad Behdad
    Lalbakhsh, Ali
    Talla, Jakub
    Peroutka, Zdenek
    Hadjilooei, Farimah
    Lalbakhsh, Pedram
    Jamshidi, Morteza
    La Spada, Luigi
    Mirmozafari, Mirhamed
    Dehghani, Mojgan
    Sabet, Asal
    Roshani, Saeed
    Roshani, Sobhan
    Bayat-Makou, Nima
    Mohamadzade, Bahare
    Malek, Zahra
    Jamshidi, Alireza
    Kiani, Sarah
    Hashemi-Dezaki, Hamed
    Mohyuddin, Wahab
    IEEE ACCESS, 2020, 8 : 109581 - 109595