Parallel Particle Swarm Optimization Using Message Passing Interface

被引:9
|
作者
Zhang, Guang-Wei [1 ,2 ,3 ]
Zhan, Zhi-Hui [1 ,2 ,3 ]
Du, Ke-Jing [4 ]
Lin, Ying [2 ,3 ,5 ]
Chen, Wei-Neng [2 ,3 ,4 ]
Li, Jing-Jing [6 ]
Zhang, Jun [1 ,2 ,3 ,4 ]
机构
[1] Sun Yat Sen Univ, Dept Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Beijing, Peoples R China
[3] MOE, Engn Res Ctr Supercomp Engn Software, Beijing, Peoples R China
[4] Sun Yat Sen Univ, Sch Adv Comp, Guangzhou 510275, Guangdong, Peoples R China
[5] Sun Yat Sen Univ, Dept Psychol, Guangzhou 510275, Guangdong, Peoples R China
[6] South China Normal Univ, Sch Comp Sci, Guangzhou, Guangdong, Peoples R China
来源
PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1 | 2015年
关键词
Parallel particle swarm optimization (PPSO); evolutionary algorithm; evolution stage; Message Passing Interface (MPI); EVOLUTIONARY COMPUTATION;
D O I
10.1007/978-3-319-13359-1_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parallel computation is an efficient way to combine the advantages of different computation paradigms to obtain promising solution. In order to analyze the performance of parallel computation techniques to the particle swarm optimization (PSO) algorithm, a parallel particle swarm optimization (PPSO) is proposed in this paper. Since the theorem of "no free lunch" exists, there is not an optimization algorithm that can perfectly tackle all problems. The PPSO provides a paradigm to combine different variants of PSO algorithms by using the Message Passing Interface (MPI) so that the advantages of diverse PSO algorithms can be utilized. The PPSO divides the whole evolution process into several stages. At the interval between two successive stages, each PSO algorithm exchanges the achievement of their evolution and then continues with the next stage of evolution. By merging the global model PSO (GPSO), the local model PSO (LPSO), the bare bone PSO (BPSO), and the comprehensive learning PSO (CLPSO), the PPSO achieves higher solution quality than the serial version of these four PSO algorithms, according to the simulation results on benchmark functions.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 50 条
  • [1] Parallelization of Particle Swarm Optimization using Message Passing Interfaces (MPIs)
    Singhal, Gagan
    Jain, Abhishek
    Patnaik, Amalendu
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 67 - 71
  • [2] Parallel ray tracing using the message passing interface
    Cameron, Charles B.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (02) : 228 - 234
  • [3] An Improved Parallel Ant Colony Optimization Based on Message Passing Interface
    Xiong, Jie
    Meng, Xiaohong
    Liu, Caiyun
    ADVANCES IN SWARM INTELLIGENCE, PT 1, PROCEEDINGS, 2010, 6145 : 249 - +
  • [4] Study of Particle Swarm Optimization Algorithms Using Message Passing Interface and Graphical Processing Units Employing a High Performance Computing Cluster
    Santana-Castolo, Manuel-H.
    Alejandro Morales, J.
    Torres-Ramos, Sulema
    Alanis, Alma Y.
    HIGH PERFORMANCE COMPUTER APPLICATIONS, 2016, 595 : 116 - 131
  • [5] A New Parallel Ant Colony Optimization Algorithm Based On Message Passing Interface
    Xiong Jie
    Liu Caiyun
    Chen Zhong
    PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 1149 - +
  • [6] Parallel multi-scale computation using the message passing interface
    Fox, B
    Liu, P
    Lu, C
    Lee, HP
    2003 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS, PROCEEDINGS, 2003, : 199 - 204
  • [7] Parallel Performance Analysis of Encryption Algorithms using Message Passing Interface
    Durad, Muhammad Hanif
    Raza, Ahmad
    Asad, Ali
    Akhtar, Muhammad Naveed
    WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL I, 2015, : 515 - 518
  • [8] A particle-based parallel scheme for material point method (MPM) using message passing interface (MPI)
    Tak-Hoe Ku
    Hyun-Gyu Kim
    Computational Particle Mechanics, 2023, 10 : 61 - 76
  • [9] A particle-based parallel scheme for material point method (MPM) using message passing interface (MPI)
    Ku, Tak-Hoe
    Kim, Hyun-Gyu
    COMPUTATIONAL PARTICLE MECHANICS, 2023, 10 (01) : 61 - 76
  • [10] Example of Parallel Computing Based on Message Passing Interface
    Yan, ChaoJun
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MANAGEMENT, EDUCATION, INFORMATION AND CONTROL, 2015, 125 : 1283 - 1287