Bivariate α,q-Bernstein-Kantorovich Operators and GBS Operators of Bivariate α,q-Bernstein-Kantorovich Type

被引:4
作者
Cai, Qing-Bo [1 ]
Cheng, Wen-Tao [2 ]
Cekim, Bayram [3 ]
机构
[1] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
[2] Anqing Normal Univ, Sch Math & Computat Sci, Anqing 246133, Anhui, Peoples R China
[3] Gazi Univ, Fac Sci, Dept Math, TR-06500 Ankara, Turkey
基金
中国国家自然科学基金;
关键词
alpha; q-Bernstein-Kantorovich operators; GBS operators; B-continuous functions; moduli of continuity; B-differentiable functions; mixed modulus of smoothness; q-integers; APPROXIMATION PROPERTIES; CONVERGENCE;
D O I
10.3390/math7121161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a family of bivariate alpha, q-Bernstein-Kantorovich operators and a family of GBS (Generalized Boolean Sum) operators of bivariate alpha, q-Bernstein-Kantorovich type. For the former, we obtain the estimate of moments and central moments, investigate the degree of approximation for these bivariate operators in terms of the partial moduli of continuity and Peetre's K-functional. For the latter, we estimate the rate of convergence of these GBS operators for B-continuous and B-differentiable functions by using the mixed modulus of smoothness.
引用
收藏
页数:18
相关论文
共 22 条
[1]  
Anastassiou G.A., 2000, Approximation Theory
[2]  
Badea C., 1990, C MATH SOC J BOLYAI, P51
[3]  
Bögel K, 1935, J REINE ANGEW MATH, V173, P5
[4]  
Bogel K, 1934, J REINE ANGEW MATH, V170, P197
[5]  
Cai QB, 2018, J INEQUAL APPL, DOI 10.1186/s13660-018-1862-0
[6]   Shape-preserving properties of a new family of generalized Bernstein operators [J].
Cai, Qing-Bo ;
Xu, Xiao-Wei .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[7]   Approximation of functions by a new family of generalized Bernstein operators [J].
Chen, Xiaoyan ;
Tan, Jieqing ;
Liu, Zhi ;
Xie, Jin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) :244-261
[8]  
Cheung P., 2002, QUANTUM CALCULUS
[9]   On statistical approximation properties of Kantorovich type q-Bernstein operators [J].
Dalmanoglu, Oezge ;
Dogru, Oguen .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) :760-771
[10]  
Gasper G., 1990, BASIC HYPERGEOMETRIC, V35