Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter

被引:87
作者
Pittman, JK
Shigaki, T
Marshall, JL
Morris, JL
Cheng, NH
Hirschi, KD
机构
[1] Baylor Coll Med, USDA ARS, Childrens Nutr Res Ctr, Houston, TX 77030 USA
[2] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England
[3] Prairie View A&M Univ, Dept Biol, Prairie View, TX 77446 USA
[4] Texas A&M Univ, Vegetable & Fruit Improvement Ctr, College Stn, TX 77845 USA
[5] Baylor Coll Med, Dept Human & Mol Genet, Houston, TX 77030 USA
关键词
Arabidopsis; calcium; cation; H+ antiport; manganese; metal transport; yeast heterologous expression;
D O I
10.1007/s11103-004-6446-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The vacuolar sequestration of metals is an important metal tolerance mechanism in plants. The Arabidopsis thaliana vacuolar transporters CAX1 and CAX2 were originally identified in a Saccharomyces cerevisiae suppression screen as Ca2+/H+ antiporters. CAX2 has a low affinity for Ca2+ but can transport other metals including Mn2+ and Cd2+. Here we demonstrate that unlike cax1 mutants, CAX2 insertional mutants caused no discernable morphological phenotypes or alterations in Ca2+/H+ antiport activity. However, cax2 lines exhibited a reduction in vacuolar Mn2+/H+ antiport and, like cax1 mutants, reduced V-type H+-ATPase (V-ATPase) activity. Analysis of a CAX2 promoter beta-glucoronidase (GUS) reporter gene fusion confirmed that CAX2 was expressed throughout the plant and strongly expressed in flower tissue, vascular tissue and in the apical meristem of young plants. Heterologous expression in yeast identified an N-terminal regulatory region in CAX2, suggesting that Arabidopsis contains multiple cation/H+ antiporters with shared regulatory features. Furthermore, despite significant variations in morphological and biochemical phenotypes, cax1 and cax2 lines both significantly alter V-ATPase activity, hinting at coordinate regulation among transporters driven by H+ gradients and the V-ATPase.
引用
收藏
页码:959 / 971
页数:13
相关论文
共 47 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]  
BLACKFORD S, 1990, J BIOL CHEM, V265, P9617
[3]   The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance [J].
Cheng, NH ;
Pittman, JK ;
Zhu, JK ;
Hirschi, KD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (04) :2922-2926
[4]   The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters [J].
Cheng, NH ;
Pittman, JK ;
Barkla, BJ ;
Shigaki, T ;
Hirschi, KD .
PLANT CELL, 2003, 15 (02) :347-364
[5]   Characterization of CAX4, an Arabidopsis H+/cation antiporter [J].
Cheng, NH ;
Pittman, JK ;
Shigaki, T ;
Hirschi, KD .
PLANT PHYSIOLOGY, 2002, 128 (04) :1245-1254
[6]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[7]   Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation [J].
Connolly, EL ;
Fett, JP ;
Guerinot, ML .
PLANT CELL, 2002, 14 (06) :1347-1357
[8]  
Cunningham KW, 1996, MOL CELL BIOL, V16, P2226
[9]   Novel vacuolar H+-ATPase complexes resulting from overproduction of Vma5p and Vma13p [J].
Curtis, KK ;
Kane, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (04) :2716-2724
[10]   Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance [J].
Delhaize, E ;
Kataoka, T ;
Hebb, DM ;
White, RG ;
Ryan, PR .
PLANT CELL, 2003, 15 (05) :1131-1142