Penalized high-dimensional empirical likelihood

被引:100
|
作者
Tang, Cheng Yong [1 ]
Leng, Chenlei [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
关键词
Confidence region; Empirical likelihood; High-dimensional data analysis; Penalized likelihood; Smoothly clipped absolute deviation; Variable selection; DIVERGING NUMBER; CONFIDENCE-INTERVALS; ESTIMATING EQUATIONS; VARIABLE SELECTION; ORACLE PROPERTIES; PARAMETERS; LASSO; SHRINKAGE; MODELS;
D O I
10.1093/biomet/asq057
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose penalized empirical likelihood for parameter estimation and variable selection for problems with diverging numbers of parameters. Our results are demonstrated for estimating the mean vector in multivariate analysis and regression coefficients in linear models. By using an appropriate penalty function, we showthat penalized empirical likelihood has the oracle property. That is, with probability tending to 1, penalized empirical likelihood identifies the true model and estimates the nonzero coefficients as efficiently as if the sparsity of the true model was known in advance. The advantage of penalized empirical likelihood as a nonparametric likelihood approach is illustrated by testing hypotheses and constructing confidence regions. Numerical simulations confirm our theoretical findings.
引用
收藏
页码:905 / 919
页数:15
相关论文
共 50 条
  • [1] Penalized empirical likelihood for high-dimensional generalized linear models
    Chen, Xia
    Mao, Liyue
    STATISTICS AND ITS INTERFACE, 2021, 14 (02) : 83 - 94
  • [2] Penalized generalized empirical likelihood in high-dimensional weakly dependent data
    Zhang, Jia
    Shi, Haoming
    Tian, Lemeng
    Xiao, Fengjun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 270 - 283
  • [3] A NEW SCOPE OF PENALIZED EMPIRICAL LIKELIHOOD WITH HIGH-DIMENSIONAL ESTIMATING EQUATIONS
    Chang, Jinyuan
    Tang, Cheng Yong
    Wu, Tong Tong
    ANNALS OF STATISTICS, 2018, 46 (6B): : 3185 - 3216
  • [4] Penalized empirical likelihood for high-dimensional generalized linear models with longitudinal data
    Chen, Xia
    Tan, Xiaoyan
    Yan, Li
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (10) : 1515 - 1531
  • [5] High-dimensional empirical likelihood inference
    Chang, Jinyuan
    Chen, Song Xi
    Tang, Cheng Yong
    Wu, Tong Tong
    BIOMETRIKA, 2021, 108 (01) : 127 - 147
  • [6] Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors
    Fan, Guo-Liang
    Liang, Han-Ying
    Shen, Yu
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 147 : 183 - 201
  • [7] High-Dimensional Censored Regression via the Penalized Tobit Likelihood
    Jacobson, Tate
    Zou, Hui
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (01) : 286 - 297
  • [8] Calibration of the empirical likelihood for high-dimensional data
    Liu, Yukun
    Zou, Changliang
    Wang, Zhaojun
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (03) : 529 - 550
  • [9] Calibration of the empirical likelihood for high-dimensional data
    Yukun Liu
    Changliang Zou
    Zhaojun Wang
    Annals of the Institute of Statistical Mathematics, 2013, 65 : 529 - 550
  • [10] On the penalized maximum likelihood estimation of high-dimensional approximate factor model
    Wang, Shaoxin
    Yang, Hu
    Yao, Chaoli
    COMPUTATIONAL STATISTICS, 2019, 34 (02) : 819 - 846