Derivation of the density of states for periodic operators by the method of asymptotic expansion

被引:0
作者
Cherednichenko, KD [1 ]
Padilla, P
机构
[1] Univ Oxford St Johns Coll, Oxford OX1 3JP, England
[2] IIMAS, Mexico City 04510, DF, Mexico
关键词
bloch waves; density of states; asymptotics;
D O I
10.1017/S0013091504000707
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new asymptotic approach is suggested for studying spectra of linear differential operators with periodic coefficients. The resulting formal recurrent procedure and its rigorous justification allow us to prove a classical theorem on the density of states in one dimension.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1973, SPECTRAL THEORY PERI
[2]  
Bloch F., 1929, Z. Phys, V52, P555, DOI [DOI 10.1007/BF01339455, 10.1007/BF01339455]
[3]   Low frequency asymptotic analysis of a string with rapidly oscillating density [J].
Castro, C ;
Zuazua, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (04) :1205-1233
[4]   High frequency asymptotic analysis of a string with rapidly oscillating density [J].
Castro, C ;
Zuazua, E .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 :595-622
[5]   Homogenization of periodic structures via Bloch decomposition [J].
Conca, C ;
Vanninathan, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (06) :1639-1659
[6]  
GRINEVICH PG, DISCRETE SPECTRUM NC
[7]   THE ROTATION NUMBER FOR ALMOST PERIODIC POTENTIALS [J].
JOHNSON, R ;
MOSER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 84 (03) :403-438
[8]  
Marchenko V., 1986, STURM LIOUVILLE OPER
[9]  
Maz'ya V., 2000, ASYMPTOTIC THEORY EL, VI, DOI DOI 10.1007/978-3-0348-8434-1
[10]  
REED M., 1978, Methods of modern mathematical physics: IV: Analysis of operators, VIV