Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis

被引:157
作者
Krishnaswamy, Sowmya [1 ]
Verma, Shiv [1 ]
Rahman, Muhammad H. [1 ]
Kav, Nat N. V. [1 ]
机构
[1] Univ Alberta, Dept Agr Food & Nutr Sci, Edmonton, AB T6G 2P5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Arabidopsis; AP2; Transcription factors; Stress tolerance; TRANSCRIPTION FACTOR GENE; WATER-USE EFFICIENCY; DNA-BINDING DOMAIN; LOW-TEMPERATURE; STRESS TOLERANCE; CONSTITUTIVE EXPRESSION; SALT TOLERANCE; FREEZING TOLERANCE; CRYSTAL-STRUCTURE; PISUM-SATIVUM;
D O I
10.1007/s11103-010-9711-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
APETALA2 (AP2) transcription factors (TFs) play very important roles in plant growth and development and in defense response. Here, we report functional characterization of four AP2 TF family genes [(RAP2.6 (At1g43160), RAP2.6L (At5g13330), DREB 26 (At1g21910) and DREB19 (At2g38340)] that were identified among NaCl inducible transcripts in abscisic acid responsive 17 (ABR17) transgenic Arabidopsis in our previous microarray analyses. DREB19 and DREB26 function as transactivators and localize in the nucleus. All four genes were abundant in early vegetative and flowering stages, although the magnitude of the expression varied. We observed tissue specific expression patterns for RAP2.6, RAP2.6L, DREB19 and DREB26 in flowers and other organs. RAP2.6 and RAP2.6L were responsive to stress hormones like jasmonic acid, salicylic acid, abscisic acid and ethylene in addition to salt and drought. DREB19 and DREB26 were less responsive to stress hormones, but the former was highly responsive to salt, heat and drought. Overexpression of RAP2.6 in Arabidopsis resulted in a dwarf phenotype with extensive secondary branching and small siliques, and DREB26 overexpression resulted in deformed plants. However, overexpression of RAP2.6L and DREB19 enhanced performance under salt and drought stresses without affecting phenotype. In summary, we have demonstrated that RAP2.6, RAP2.6L, DREB26 and DREB19 are transactivators, they exhibit tissue specific expression, and they participate in plant developmental processes as well as biotic and/or abiotic stress signaling. It is possible that the results from this study on these transcription factors, in particular RAP2.6L and DREB19, can be utilized in developing salt and drought tolerant plants in the future.
引用
收藏
页码:107 / 127
页数:21
相关论文
共 88 条
[1]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[2]   Drought and salt tolerance in plants [J].
Bartels, D ;
Sunkar, R .
CRITICAL REVIEWS IN PLANT SCIENCES, 2005, 24 (01) :23-58
[3]  
Basra S. M. A., 2003, International Journal of Agriculture and Biology, V5, P117
[4]   Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi [J].
Berrocal-Lobo, M ;
Molina, A ;
Solano, R .
PLANT JOURNAL, 2002, 29 (01) :23-32
[5]   Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions [J].
Bhatnagar-Mathur, Pooja ;
Devi, M. Jyostna ;
Reddy, D. Srinivas ;
Lavanya, M. ;
Vadez, Vincent ;
Serraj, R. ;
Yamaguchi-Shinozaki, K. ;
Sharma, Kiran K. .
PLANT CELL REPORTS, 2007, 26 (12) :2071-2082
[6]   Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress [J].
Blum, A. .
FIELD CROPS RESEARCH, 2009, 112 (2-3) :119-123
[7]   Growth stage-based phenotypic analysis of arabidopsis:: A model for high throughput functional genomics in plants [J].
Boyes, DC ;
Zayed, AM ;
Ascenzi, R ;
McCaskill, AJ ;
Hoffman, NE ;
Davis, KR ;
Görlach, J .
PLANT CELL, 2001, 13 (07) :1499-1510
[8]  
Bray EA., 2000, Biochem. Mol. Biol. Plants, P1158
[9]   Modeling the recent evolution of global drought and projections for the twenty-first century with the hadley centre climate model [J].
Burke, Eleanor J. ;
Brown, Simon J. ;
Christidis, Nikolaos .
JOURNAL OF HYDROMETEOROLOGY, 2006, 7 (05) :1113-1125
[10]   Molecular characterization of a cytokinin-inducible periwinkle protein showing sequence homology with pathogenesis-related proteins and the Bet v 1 allergen family [J].
Carpin, S ;
Laffer, S ;
Schoentgen, F ;
Valenta, R ;
Chénieux, JC ;
Rideau, M ;
Hamdi, S .
PLANT MOLECULAR BIOLOGY, 1998, 36 (05) :791-798