Bio-inspired flight control and visual search with CNN technology

被引:0
|
作者
Rekeczky, C [1 ]
Bálya, D [1 ]
Timár, G [1 ]
Szatmári, I [1 ]
机构
[1] Hungarian Acad Sci, Inst Comp & Automat, AnaLog & Neural Comp Syst Lab, H-1111 Budapest, Hungary
来源
PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III: GENERAL & NONLINEAR CIRCUITS AND SYSTEMS | 2003年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper it is shown that by building on parallel topographic CNN preprocessing of image flows, efficient terrain exploration and visual navigation algorithms can be developed. The approach combines several channels of nonlinear spatio-temporal feature detectors within an analogic CNN algorithm and produces unique binary maps of salient feature locations. This preprocessing scheme is embedded into a multi-target tracking (MTT) framework where these features are statistically described and assigned to numbered tracks. The MTT output has two distinct roles. First, its feature descriptors drive a classifier based on the adaptive-resonance theory (ART), which is also implemented on CNN architecture. Second, it provides an optical flow ("target displacement") estimate to the navigation system, which in turn calculates the flight control parameters (Yaw-Pitch-Roll). An upper level visual attention and selection mechanism uses both the feature descriptors and the optical flow estimates to automatically adjust the focus and scale (zoom) during navigation. The paper describes the architecture and the algorithmic frameworks and provides the first experimental results on aerial video-flows.
引用
收藏
页码:774 / 777
页数:4
相关论文
共 50 条
  • [1] A bio-inspired visual feedback locomotion control based on CNN universal machine
    Arena, P
    Basile, A
    Bucolo, M
    Fortuna, L
    Virzí, A
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2003, 12 (06) : 805 - 823
  • [2] A bio-inspired architecture of an active visual search model
    Cutsuridis, Vassilis
    ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT II, 2008, 5164 : 248 - 257
  • [3] Bio-inspired nano-sensor-enhanced CNN visual computer
    Porod, W
    Werblin, F
    Chua, LO
    Roska, T
    Rodriguez-Vázquez, A
    Roska, B
    Fay, P
    Bernstein, GH
    Huang, YF
    Csurgay, AI
    COEVOLUTION OF HUMAN POTENTIAL AND CONVERGING TECHNOLOGIES, 2004, 1013 : 92 - 109
  • [4] THE PHYSICS OF BIO-INSPIRED COVERT FLAPS AS FLIGHT CONTROL DEVICES
    Zekry, Diaa A.
    Wissa, Aimy A.
    PROCEEDINGS OF ASME 2024 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, SMASIS 2024, 2024,
  • [5] Robustness strategies in bio-inspired flight systems: morphology, dynamics and flight control
    Liu, H.
    Nakata, T.
    Noda, R.
    Chen, D.
    Ueyama, K.
    Akiyama, K.
    Kolomenskiy, D.
    BIOINSPIRATION, BIOMIMETICS, AND BIOREPLICATION VIII, 2018, 10593
  • [6] Bio-inspired medical technology
    Breedveld, P.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2007, 146 (04): : S135 - S136
  • [7] Bio-inspired aircraft control
    Zikmund, Pavel
    Macik, Miroslav
    Dvorak, Petr
    Mikovec, Zdenek
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2018, 90 (06): : 983 - 991
  • [8] Science and Technology of Bio-Inspired Adhesives
    Izadi, Hadi
    Penlidis, Alexander
    MACROMOLECULAR REACTION ENGINEERING, 2013, 7 (11) : 570 - 572
  • [9] A bio-inspired CNN layer with image processing capabilities
    Karahaliloglu, K
    Balkir, S
    Schemm, N
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 4110 - 4113
  • [10] A Bio-Inspired Scheme for Coordinated Online Search
    Garcia, Alfredo
    Li, Chenyang
    Pedraza, Fernan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (09) : 2142 - 2147