Vector A2 weights and a Hardy-Littlewood maximal function

被引:29
作者
Christ, M [1 ]
Goldberg, M [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1090/S0002-9947-01-02759-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An analogue of the Hardy-Littlewood maximal function is introduced, for functions taking values in finite-dimensional Hilbert spaces. It is shown to be L-2 bounded with respect to weights in the class A(2) of Treil, thereby extending a theorem of Muckenhoupt from the scalar to the vector case.
引用
收藏
页码:1995 / 2002
页数:8
相关论文
共 20 条
[1]  
[Anonymous], HARMONIC ANAL
[2]   WEIGHTED NORM INEQUALITIES AND SCHUR LEMMA [J].
CHRIST, M .
STUDIA MATHEMATICA, 1984, 78 (03) :309-319
[3]   A NOTE ON WEIGHTED NORM INEQUALITIES FOR THE HARDY-LITTLEWOOD MAXIMAL OPERATOR [J].
CHRIST, M ;
FEFFERMAN, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (03) :447-448
[4]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[5]   THE THEORY OF WEIGHTS AND THE DIRICHLET PROBLEM FOR ELLIPTIC-EQUATIONS [J].
FEFFERMAN, RA ;
KENIG, CE ;
PIPHER, J .
ANNALS OF MATHEMATICS, 1991, 134 (01) :65-124
[6]  
GOLDBERG MB, UNPUB
[7]   WEIGHTED NORM INEQUALITIES FOR CONJUGATE FUNCTION AND HILBERT TRANSFORM [J].
HUNT, R ;
MUCKENHOUPT, B ;
WHEEDEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 176 (449) :227-251
[8]   WEIGHTED NORM INEQUALITIES FOR HARDY MAXIMAL FUNCTION [J].
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 165 (MAR) :207-+
[9]   Counterexample to the infinite dimensional Carleson embedding theorem [J].
Nazarov, F ;
Treil, S ;
Volberg, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (04) :383-388
[10]   The bellman functions and two-weight inequalities for Haar multipliers [J].
Nazarov, F ;
Treil, S ;
Volberg, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :909-928