Protein-protein docking benchmark version 4.0

被引:349
|
作者
Hwang, Howook [1 ]
Vreven, Thom [1 ]
Janin, Joel [2 ]
Weng, Zhiping [1 ]
机构
[1] Univ Massachusetts, Sch Med, Program Bioinformat & Integrat Biol, Worcester, MA 01605 USA
[2] IBBMC Univ Paris Sud, CNRS, UMR 8619, F-91405 Orsay, France
关键词
protein-protein docking; protein complexes; protein-protein interactions; complex structure;
D O I
10.1002/prot.22830
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We updated our protein protein docking benchmark to include complexes that became available since our previous release. As before, we only considered high-resolution complex structures that are nonredundant at the family family pair level, for which the X-ray or NMR unbound structures of the constituent proteins are also available. Benchmark 4.0 adds 52 new complexes to the 124 cases of Benchmark 3.0, representing an increase of 42%. Thus, benchmark 4.0 provides 176 unbound unbound cases that can be used for protein protein docking method development and assessment. Seventeen of the newly added cases are enzyme-inhibitor complexes, and we found no new antigen-antibody complexes. Classifying the new cases according to expected difficulty for protein protein docking algorithms gives 33 rigid body cases, 11 cases of medium difficulty, and 8 cases that are difficult. Benchmark 4.0 listings and processed structure files are publicly accessible at http://zlab.umassmed.edu/benchmark/Proteins 2010; 78:3111-3114. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:3111 / 3114
页数:4
相关论文
共 50 条
  • [11] Protein-protein association kinetics and protein docking
    Camacho, CJ
    Vajda, S
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (01) : 36 - 40
  • [12] MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers
    Ohue, Masahito
    Shimoda, Takehiro
    Suzuki, Shuji
    Matsuzaki, Yuri
    Ishida, Takashi
    Akiyama, Yutaka
    BIOINFORMATICS, 2014, 30 (22) : 3281 - 3283
  • [13] Recent Advances in Protein-Protein Docking
    Zhang, Qian
    Feng, Ting
    Xu, Lei
    Sun, Huiyong
    Pan, Peichen
    Li, Youyong
    Li, Dan
    Hou, Tingjun
    CURRENT DRUG TARGETS, 2016, 17 (14) : 1586 - 1594
  • [14] Clustering protein-protein docking predictions
    Tong, W
    Weng, Z
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 2999 - 3002
  • [15] Protein-protein docking with rosettadock.
    Gray, JJ
    Baker, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U220 - U221
  • [16] Pushing the Backbone in Protein-Protein Docking
    Kuroda, Daisuke
    Gray, Jeffrey J.
    STRUCTURE, 2016, 24 (10) : 1821 - 1829
  • [17] Progress in protein-protein docking approaches
    Li Chun-Hua
    Ma Xiao-Hui
    Chen Wei-Zu
    Wang Cun-Xin
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2006, 33 (07) : 616 - 621
  • [18] Protein-protein docking predictions with RosettaDock
    Gray, JJ
    Baker, D
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 306A - 306A
  • [19] Protein-Protein Interaction Analysis by Docking
    Fink, Florian
    Ederer, Stephan
    Gronwald, Wolfram
    ALGORITHMS, 2009, 2 (01): : 429 - 436
  • [20] Hydrophobic complementarity in protein-protein docking
    Berchanski, A
    Shapira, B
    Eisenstein, M
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2004, 56 (01) : 130 - 142