Climate envelope, life history traits and the resilience of birds facing global change

被引:269
作者
Jiguet, Frederic
Gadot, Anne-Sophie
Julliard, Romain
Newson, Stuart E.
Couvet, Denis
机构
[1] Natl Museum Nat Hist, UMR Conservat Especes 5173, CRBPO, F-75005 Paris, France
[2] Royal Soc Protect Birds, European Bird Census Counicl, Sandy SG19 2DL, Beds, England
[3] British Trust Ornithol, Thetford IP24 2PU, Norfolk, England
关键词
annual fecundity; broad-scale monitoring; brood number; climate warming; habitat specialist; natal dispersal; population trend; thermal maximum;
D O I
10.1111/j.1365-2486.2007.01386.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Few studies have examined how life history traits and the climate envelope influence the ability of species to respond to climate change and habitat degradation. In this study, we test whether 18 species-specific variables, related to the climate envelope, ecological envelope and life history, could predict recent population trends (over 17 years) of 71 common breeding bird species in France. Habitat specialists were declining at a much higher rate than generalists, a sign that habitat quality is decreasing globally. The lower the thermal maximum (temperature at the hot edge of the climate envelope), the more negative are the population trends and the less tolerant these species are climate warming, regardless of the thermal range over which these species occur. The life history trait 'the number of broods per year' was positively related to recent trends, suggesting that single-brooded species might be more sensitive to advances in food peak due to climate change, as it increases the risk of mistiming their single-breeding event. Annual fecundity explained long-term declines, as it is a good proxy for most other demographic rates, with shorter-lived species being more sensitive to global change: individuals of species with higher fecundity might have too short a life to learn to adapt to directional changes in their environment. Finally, there was evidence that natal dispersal was a predictor of recent trends, with species with high natal dispersal experiencing smaller population declines than species with low natal dispersal. This is expected if the higher the natal dispersal, the larger the ability to shift spatially when facing changes in local habitat or climate, in order to track optimal conditions and adapt to global change. Identifying decline-promoting factors allow us to infer mechanisms responsible for observed declines in wild bird populations facing global change, and by doing so allow for a more pre-emptive approach to conservation planning.
引用
收藏
页码:1672 / 1684
页数:13
相关论文
共 60 条
[1]   Thermal tolerance, climatic variability and latitude [J].
Addo-Bediako, A ;
Chown, SL ;
Gaston, KJ .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2000, 267 (1445) :739-745
[2]   Negative relationship between dispersal distance and demography in butterfly metapopulations [J].
Baguette, M ;
Schtickzelle, N .
ECOLOGY, 2006, 87 (03) :648-654
[3]  
BASTIAN H-V, 1992, Ringing and Migration, V13, P13
[4]   Linking agricultural practice to insect and bird populations: a historical study over three decades [J].
Benton, TG ;
Bryant, DM ;
Cole, L ;
Crick, HQP .
JOURNAL OF APPLIED ECOLOGY, 2002, 39 (04) :673-687
[5]   Climate change and population declines in a long-distance migratory bird [J].
Both, C ;
Bouwhuis, S ;
Lessells, CM ;
Visser, ME .
NATURE, 2006, 441 (7089) :81-83
[6]   Adjustment to climate change is constrained by arrival date in a long-distance migrant bird [J].
Both, C ;
Visser, ME .
NATURE, 2001, 411 (6835) :296-298
[7]  
Canellas C., 2002, METEOROLOGIE, V38, P45, DOI [10.4267/2042/36233, DOI 10.4267/2042/36233]
[8]   Multiple causes of high extinction risk in large mammal species [J].
Cardillo, M ;
Mace, GM ;
Jones, KE ;
Bielby, J ;
Bininda-Emonds, ORP ;
Sechrest, W ;
Orme, CDL ;
Purvis, A .
SCIENCE, 2005, 309 (5738) :1239-1241
[9]   DIRECTIONS IN CONSERVATION BIOLOGY [J].
CAUGHLEY, G .
JOURNAL OF ANIMAL ECOLOGY, 1994, 63 (02) :215-244
[10]   Climate change related to egg-laying trends [J].
Crick, HQP ;
Sparks, TH .
NATURE, 1999, 399 (6735) :423-424