Dynamical analysis, stability and discretization of fractional-order predator-prey model with negative feedback on two species

被引:2
作者
Biranvand, Nader [1 ]
Babolian, Esmail [2 ]
Vahidi, Alireza [1 ]
机构
[1] Islamic Azad Univ, Shahr e Rey Branch, Dept Math Appl, Yadegar Imam Khomeini RAH, Tehran, Iran
[2] Kharazmi Univ, Fac Math Sci & Comp, Tehran, Iran
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2021年 / 12卷 / 02期
关键词
fractional calculus; predator-prey; Lotka-Volterra; stability; discretization; CHAOTIC DYNAMICS; SYNCHRONIZATION; SYSTEM; VAN;
D O I
10.22075/ijnaa.2020.19764.2099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Lotka-Volterra model is an important model being employed in biological phenomena to investigate the nonlinear interaction among existing species. In this work, we first consider an integer order predator-prey model with negative feedback on both prey and predator. Then by introducing a fractional model into the existing one, we give them a specified memory. We also obtain its discretized counterpart. Finally, along with giving the biological interpretation of the system, the stability and dynamical analysis of the proposed model are investigated and the results are illustrated as well.
引用
收藏
页码:729 / 741
页数:13
相关论文
共 42 条
[1]   On fractional order differential equations model for nonlocal epidemics [J].
Ahmed, E. ;
Elgazzar, A. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :607-614
[2]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[3]  
[Anonymous], 1998, Fractional Differential Equations
[4]  
ARORA AK, 1987, INDIAN J PURE AP MAT, V18, P931
[5]   Analysis of the van der pol oscillator containing derivatives of fractional order [J].
Barbosa, Ramiro S. ;
Machado, J. A. Tenreiro ;
Vinagre, B. M. ;
Calderon, A. J. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1291-1301
[6]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[7]   ENERGY ESTIMATE FOR IMPULSIVE FRACTIONAL ADVECTION DISPERSION EQUATIONS IN ANOMALOUS DIFFUSIONS [J].
Biranvand, Nader ;
Salari, Amjad .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018, 2018
[8]   The fractional viscoelastic response of human breast tissue cells [J].
Carmichael, B. ;
Babahosseini, H. ;
Mahmoodi, S. N. ;
Agah, M. .
PHYSICAL BIOLOGY, 2015, 12 (04)
[9]   Chaotic dynamics of the fractionally damped van der Pol equation [J].
Chen, Juhn-Horng ;
Chen, Wei-Ching .
CHAOS SOLITONS & FRACTALS, 2008, 35 (01) :188-198
[10]   Nonlinear dynamics and chaos in a fractional-order financial system [J].
Chen, Wei-Ching .
CHAOS SOLITONS & FRACTALS, 2008, 36 (05) :1305-1314