L-series for Vector-valued Modular Forms

被引:3
作者
Kim, Byungchan [1 ]
Lim, Subong [2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Sch Liberal Arts, 232 Gongneung Ro, Seoul 01811, South Korea
[2] Sungkyunkwan Univ, Dept Math Educ, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2016年 / 20卷 / 04期
基金
新加坡国家研究基金会;
关键词
L-series; Vector-valued modular forms; Vector-valued harmonic weak Maass forms; Period polynomials;
D O I
10.11650/tjm.20.2016.5976
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the recent works of Bringmann, Guerzhoy, Kent, and Ono [4] and Bringmann, Fricke, and Kent [3], we introduce L-series for vector-valued weakly holomorphic cusp forms, and mock modular period polynomials for vector-valued harmonic weak Maass forms. In particular, we will discuss an integral representation of this new L-series and the limiting behavior of special values. Moreover, we also give relations between mock modular periods and L-series for vector-valued harmonic weak Maass forms.
引用
收藏
页码:705 / 722
页数:18
相关论文
共 11 条
[1]  
Bol G., 1949, Abh. Math. Sem. Univ. Hamburg, V16, P1, DOI DOI 10.1007/BF03343515
[2]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[3]   SPECIAL L-VALUES AND PERIODS OF WEAKLY HOLOMORPHIC MODULAR FORMS [J].
Bringmann, Kathrin ;
Fricke, Karl-Heinz ;
Kent, Zachary A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) :3425-3439
[4]   Eichler-Shimura theory for mock modular forms [J].
Bringmann, Kathrin ;
Guerzhoy, Pavel ;
Kent, Zachary ;
Ono, Ken .
MATHEMATISCHE ANNALEN, 2013, 355 (03) :1085-1121
[5]   Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues [J].
Bruinier, Jan H. ;
Ono, Ken ;
Rhoades, Robert C. .
MATHEMATISCHE ANNALEN, 2008, 342 (03) :673-693
[6]   The Weil representation and Hecke operators for vector valued modular forms [J].
Bruinier, Jan Hendrik ;
Stein, Oliver .
MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (02) :249-270
[7]   On two geometric theta lifts [J].
Bruinier, JH ;
Funke, J .
DUKE MATHEMATICAL JOURNAL, 2004, 125 (01) :45-90
[8]  
Eichler M., 1985, The theory of Jacobi forms, V55
[9]  
Eichler M., 1957, MATH Z, V67, P267, DOI [10.1007/BF01258863, DOI 10.1007/BF01258863]
[10]  
Jin Shi., PREPRINT