Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma

被引:168
作者
Calderaro, Julien [1 ,2 ,3 ]
Seraphin, Tobias Paul [4 ]
Luedde, Tom [4 ]
Simon, Tracey G. [5 ,6 ,7 ]
机构
[1] Henri Mondor Univ Hosp, AP HP, Dept Pathol, Creteil, France
[2] INSERM, U955, F-94010 Creteil, France
[3] Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
[4] Heinrich Heine Univ Duesseldorf, Med Fac, Univ Hosp Duesseldorf, Dept Gastroenterol Hepatol & Infect Dis, Dusseldorf, Germany
[5] Massachusetts Gen Hosp, Liver Ctr, Div Gastroenterol, 55 Fruit St,Wang 5th Floor, Boston, MA 02114 USA
[6] Harvard Med Sch, Boston, MA 02115 USA
[7] Massachusetts Gen Hosp, Clin & Translat Epidemiol Unit CTEU, Boston, MA 02114 USA
关键词
Artificial intelligence; Machine learning; Deep learning; Liver cancer; CONVOLUTIONAL NEURAL-NETWORK; FOCAL LIVER-LESIONS; LANDSCAPE; ULTRASOUND; DIAGNOSIS; MODELS; CELLS;
D O I
10.1016/j.jhep.2022.01.014
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Hepatocellular carcinoma (HCC) currently represents the fifth most common malignancy and the third leading cause of cancer-related death worldwide, with incidence and mortality rates that are increasing. Recently, artificial intelligence (AI) has emerged as a unique opportunity to improve the full spectrum of HCC clinical care, by improving HCC risk prediction, diagnosis, and prognostication. AI approaches include computational search algorithms, machine learning (ML) and deep learning (DL) models. ML consists of a computer running repeated iterations of models, in order to progressively improve performance of a specific task, such as classifying an outcome. DL models are a subtype of ML, based on neural network structures that are inspired by the neuroanatomy of the human brain. A growing body of recent data now apply DL models to diverse data sources - including electronic health record data, imaging modalities, histopathology and molecular biomarkers - to improve the accuracy of HCC risk prediction, detection and prediction of treatment response. Despite the promise of these early results, future research is still needed to standardise AI data, and to improve both the generalisability and interpretability of results. If such challenges can be overcome, AI has the potential to profoundly change the way in which care is provided to patients with or at risk of HCC. (C) 2022 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1348 / 1361
页数:14
相关论文
共 88 条
[1]   Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning -An Artificial Intelligence Concept [J].
Abajian, Aaron ;
Murali, Nikitha ;
Savic, Lynn Jeanette ;
Laage-Gaupp, Fabian Max ;
Nezami, Nariman ;
Duncan, James S. ;
Schlachter, Todd ;
Lin, MingDe ;
Geschwind, Jean-Francois ;
Chapiro, Julius .
JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2018, 29 (06) :850-857
[2]   A human liver cell atlas reveals heterogeneity and epithelial progenitors [J].
Aizarani, Nadim ;
Saviano, Antonio ;
Sagar ;
Mailly, Laurent ;
Durand, Sarah ;
Herman, Josip S. ;
Pessaux, Patrick ;
Baumert, Thomas F. ;
Gruen, Dominic .
NATURE, 2019, 572 (7768) :199-204
[3]   Exploring single-cell data with deep multitasking neural networks [J].
Amodio, Matthew ;
van Dijk, David ;
Srinivasan, Krishnan ;
Chen, William S. ;
Mohsen, Hussein ;
Moon, Kevin R. ;
Campbell, Allison ;
Zhao, Yujiao ;
Wang, Xiaomei ;
Venkataswamy, Manjunatha ;
Desai, Anita ;
Ravi, V. ;
Kumar, Priti ;
Montgomery, Ruth ;
Wolf, Guy ;
Krishnaswamy, Smita .
NATURE METHODS, 2019, 16 (11) :1139-+
[4]  
[Anonymous], GOV C NCT04802954, P2021
[5]   Classification of breast cancer histology images using Convolutional Neural Networks [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Castro, Eduardo ;
Rouco, Jose ;
Aguiar, Paulo ;
Eloy, Catarina ;
Polonia, Antonio ;
Campilho, Aurelio .
PLOS ONE, 2017, 12 (06)
[6]   DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data [J].
Arisdakessian, Cedric ;
Poirion, Olivier ;
Yunits, Breck ;
Zhu, Xun ;
Garmire, Lana X. .
GENOME BIOLOGY, 2019, 20 (01)
[7]  
Baecker A, 2018, EUR J CANCER PREV, V27, P205, DOI [10.1097/cej.0000000000000428, 10.1097/CEJ.0000000000000428]
[8]   Data Sharing An Ethical and Scientific Imperative [J].
Bauchner, Howard ;
Golub, Robert M. ;
Fontanarosa, Phil B. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 315 (12) :1237-1239
[9]   Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer [J].
Borghaei, H. ;
Paz-Ares, L. ;
Horn, L. ;
Spigel, D. R. ;
Steins, M. ;
Ready, N. E. ;
Chow, L. Q. ;
Vokes, E. E. ;
Felip, E. ;
Holgado, E. ;
Barlesi, F. ;
Kohlhaeufl, M. ;
Arrieta, O. ;
Burgio, M. A. ;
Fayette, J. ;
Lena, H. ;
Poddubskaya, E. ;
Gerber, D. E. ;
Gettinger, S. N. ;
Rudin, C. M. ;
Rizvi, N. ;
Crino, L. ;
Blumenschein, G. R. ;
Antonia, S. J. ;
Dorange, C. ;
Harbison, C. T. ;
Finckenstein, F. Graf ;
Brahmer, J. R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (17) :1627-1639
[10]   Molecular and histological correlations in liver cancer [J].
Calderaro, Julien ;
Ziol, Marianne ;
Paradis, Valerie ;
Zucman-Rossi, Jessica .
JOURNAL OF HEPATOLOGY, 2019, 71 (03) :616-630