Normalized volumes of configurations related with root systems and complete bipartite graphs

被引:4
作者
Ohsugi, H
Hibi, T
机构
[1] Rikkyo Univ, Dept Math, Toshima Ku, Tokyo 1718501, Japan
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Osaka 5600043, Japan
关键词
initial ideals; normalized volume; unimodular triangulations; root systems; complete bipartite graphs;
D O I
10.1016/S0012-365X(02)00690-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Phi subset of Z(n) denote one of the classical irreducible root systems A(n-1), B-n, C-n and D-n, and write Phi((+)) for the configuration consisting of all positive roots of Phi together with the origin of R-n. Gelfand, Graev and Postnikov, in: V.I. Arnold, I.M. Gelfand, M. Smirnov, V.S. Retakh (Eds.), Arnold-Gelfand, Mathematics Seminars, Geometry and Singularity Theory, Birkhauser, Boston, 1997, pp. 205-221 showed that by constructing an explicit unimodular triangulation, the normalized volume of the convex hull of A(n-1)((+)) is equal to the Catalan number. On the other hand, Fong (Triangulations and Combinatorial Properties of Convex Polytopes, Dissertation, MIT Press, Cambridge, MA, 2000) computed the normalized volume of the convex hull of each of the configurations B-n((+)), C-n((+)) and D-n((+)). Moreover, the normalized volume of the convex hull of the subconfiguration of A(n-1)((+)) arising from a complete bipartite graph was computed by Ohsugi and Hibi (Illinois J. Math. 44 (2000) 391) and Fong. The purpose of the present paper is, via the theory of Grobner bases of toric ideals and triangulations, to compute the normalized volume of the convex hull of each of the subconfigurations of B-n((+)), C-n((+)) and D-n((+)) arising from a complete bipartite graph. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:217 / 242
页数:26
相关论文
共 10 条
[1]  
[Anonymous], THESIS MIT CAMBRIDGE
[2]  
[Anonymous], 1997, The Arnold-Gelfand mathematical seminars, DOI DOI 10.1007/978-1-4612-4122-5
[3]  
[Anonymous], 1995, University Lecture Series
[4]   Finite lattices and lexicographic Grobner bases [J].
Aramova, A ;
Herzog, J ;
Hibi, T .
EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (04) :431-439
[5]  
Cox DA, 1996, IDEALS VARIETIES ALG
[6]  
Humphreys J E, 1972, INTRO LIE ALGEBRAS R, DOI DOI 10.1007/978-1-4612-6398-2
[7]  
Ohsugi H, 2000, OSAKA J MATH, V37, P745
[8]   Compressed polytopes, initial ideals and complete multipartite graphs [J].
Ohsugi, H ;
Hibi, T .
ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (02) :391-406
[9]   Quadratic initial ideals of root systems [J].
Ohsugi, H ;
Hibi, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (07) :1913-1922
[10]  
Stanley R., 1986, ENUMERATIVE COMBINAT, V1