On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators

被引:53
作者
Dang, Cong D. [1 ]
Lan, Guanghui [1 ]
机构
[1] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Complexity; Monotone variational inequality; Pseudo-monotone variational inequality; Extragradient methods; Non-Euclidean methods; Prox-mapping;
D O I
10.1007/s10589-014-9673-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study a class of generalized monotone variational inequality (GMVI) problems whose operators are not necessarily monotone (e.g., pseudomonotone). We present non-Euclidean extragradient (N-EG) methods for computing approximate strong solutions of these problems, and demonstrate how their iteration complexities depend on the global Lipschitz or Holder continuity properties for their operators and the smoothness properties for the distance generating function used in the N-EG algorithms. We also introduce a variant of this algorithm by incorporating a simple line-search procedure to deal with problems with more general continuous operators. Numerical studies are conducted to illustrate the significant advantages of the developed algorithms over the existing ones for solving large-scale GMVI problems.
引用
收藏
页码:277 / 310
页数:34
相关论文
共 31 条
[1]  
[Anonymous], 1999, Nonlinear Programming
[2]  
[Anonymous], 2013, Introductory lectures on convex optimization: A basic course
[3]  
[Anonymous], 1983, Wiley-Interscience Series in Discrete Mathematics
[4]   Interior gradient and proximal methods for convex and conic optimization [J].
Auslender, A ;
Teboulle, M .
SIAM JOURNAL ON OPTIMIZATION, 2006, 16 (03) :697-725
[5]   Bregman monotone optimization algorithms [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) :596-636
[6]  
Ben-Tal A, 2000, MPS SIAM SERIES OPTI
[7]  
BREGMAN L. M., 1967, USSR Computational Mathematics and Mathematical Physics, V7, P200, DOI 10.1016/0041-5553(67)90040-7
[8]   2-METRIC PROJECTION METHODS FOR CONSTRAINED OPTIMIZATION [J].
GAFNI, EM ;
BERTSEKAS, DP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (06) :936-964
[9]  
Harker P.T., 1990, LECT APPL MATH, V26
[10]   FINITE-DIMENSIONAL VARIATIONAL INEQUALITY AND NONLINEAR COMPLEMENTARITY-PROBLEMS - A SURVEY OF THEORY, ALGORITHMS AND APPLICATIONS [J].
HARKER, PT ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1990, 48 (02) :161-220