EpiTOP-a proteochemometric tool for MHC class II binding prediction

被引:51
作者
Dimitrov, Ivan [1 ]
Garnev, Panayot [1 ]
Flower, Darren R. [2 ]
Doytchinova, Irini [1 ]
机构
[1] Med Univ Sofia, Fac Pharm, Sofia 1000, Bulgaria
[2] Aston Univ, Birmingham B4 7ET, W Midlands, England
基金
英国惠康基金;
关键词
PEPTIDE BINDING; GENERATION; ALGORITHM;
D O I
10.1093/bioinformatics/btq324
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: T-cell epitope identification is a critical immuno-informatic problem within vaccine design. To be an epitope, a peptide must bind an MHC protein. Results: Here, we present EpiTOP, the first server predicting MHC class II binding based on proteochemometrics, a QSAR approach for ligands binding to several related proteins. EpiTOP uses a quantitative matrix to predict binding to 12 HLA-DRB1 alleles. It identifies 89% of known epitopes within the top 20% of predicted binders, reducing laboratory labour, materials and time by 80%. EpiTOP is easy to use, gives comprehensive quantitative predictions and will be expanded and updated with new quantitative matrices over time.
引用
收藏
页码:2066 / 2068
页数:3
相关论文
共 17 条
  • [1] The use of the area under the roc curve in the evaluation of machine learning algorithms
    Bradley, AP
    [J]. PATTERN RECOGNITION, 1997, 30 (07) : 1145 - 1159
  • [2] Automated generation and evaluation of specific MHC binding predictive tools:: ARB matrix applications
    Bui, HH
    Sidney, J
    Peters, B
    Sathiamurthy, M
    Sinichi, A
    Purton, KA
    Mothé, BR
    Chisari, FV
    Watkins, DI
    Sette, A
    [J]. IMMUNOGENETICS, 2005, 57 (05) : 304 - 314
  • [3] Peptide binding to the HLA-DRB1 supertype: A proteochemometrics analysis
    Dimitrov, Ivan
    Garnev, Panayot
    Flower, Darren R.
    Doytchinova, Irini
    [J]. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2010, 45 (01) : 236 - 243
  • [4] Prediction of MHC class I binding peptides, using SVMHC -: art. no. 25
    Dönnes, P
    Elofsson, A
    [J]. BMC BIOINFORMATICS, 2002, 3 (1)
  • [5] Towards the in silico identification of class II restricted T-cell epitopes:: a partial least squares iterative self-consistent algorithm for affinity prediction
    Doytchinova, IA
    Flower, DR
    [J]. BIOINFORMATICS, 2003, 19 (17) : 2263 - 2270
  • [6] FLOWER DR, 2008, BIOINFORMATICS VACCI, P167
  • [7] PEPTIDE QUANTITATIVE STRUCTURE-ACTIVITY-RELATIONSHIPS, A MULTIVARIATE APPROACH
    HELLBERG, S
    SJOSTROM, M
    SKAGERBERG, B
    WOLD, S
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 1987, 30 (07) : 1126 - 1135
  • [8] Development of proteo-chemometrics: a novel technology for the analysis of drug-receptor interactions
    Lapinsh, M
    Prusis, P
    Gutcaits, A
    Lundstedt, T
    Wikberg, JES
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2001, 1525 (1-2): : 180 - 190
  • [9] Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research
    Lin, Hong Huang
    Zhang, Guang Lan
    Tongchusak, Songsak
    Reinherz, Ellis L.
    Brusic, Vladimir
    [J]. BMC BIOINFORMATICS, 2008, 9 (Suppl 12)
  • [10] Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method
    Nielsen, Morten
    Lundegaard, Claus
    Lund, Ole
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)