Conserved role of intragenic DNA methylation in regulating alternative promoters

被引:1238
|
作者
Maunakea, Alika K. [2 ]
Nagarajan, Raman P. [2 ]
Bilenky, Mikhail [3 ]
Ballinger, Tracy J. [1 ]
D'Souza, Cletus [3 ]
Fouse, Shaun D. [2 ]
Johnson, Brett E. [2 ]
Hong, Chibo [2 ]
Nielsen, Cydney [3 ]
Zhao, Yongjun [3 ]
Turecki, Gustavo [4 ]
Delaney, Allen [3 ]
Varhol, Richard [3 ]
Thiessen, Nina [3 ]
Shchors, Ksenya [5 ]
Heine, Vivi M. [6 ,7 ,8 ]
Rowitch, David H. [6 ,7 ,8 ]
Xing, Xiaoyun [9 ]
Fiore, Chris [9 ]
Schillebeeckx, Maximiliaan [9 ]
Jones, Steven J. M. [3 ]
Haussler, David [1 ,10 ]
Marra, Marco A. [3 ]
Hirst, Martin [3 ]
Wang, Ting [1 ,9 ]
Costello, Joseph F. [2 ]
机构
[1] Univ Calif Santa Cruz, Ctr Biomol Sci & Engn, Santa Cruz, CA 95064 USA
[2] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, Dept Neurosurg, Brain Tumor Res Ctr, San Francisco, CA 94158 USA
[3] BC Canc Agcy, Genome Sci Ctr, Vancouver, BC V5Z 1L3, Canada
[4] Douglas Hosp, Res Ctr, McGill Grp Suicide Studies, Verdun, PQ H4H 1R3, Canada
[5] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94158 USA
[6] Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94143 USA
[7] Univ Calif San Francisco, Inst Regenerat Med, San Francisco, CA 94143 USA
[8] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA
[9] Washington Univ, Ctr Genome Sci & Syst Biol, Dept Genet, St Louis, MO 63108 USA
[10] Univ Calif Santa Cruz, Howard Hughes Med Inst, Santa Cruz, CA 95064 USA
关键词
WIDE; ARCHITECTURE; METHYLOME;
D O I
10.1038/nature09165
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although it is known that the methylation of DNA in 5' promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear(1-5). In mammals, tissue-and cell type-specific methylation is present in a small percentage of 5' CpG island (CGI) promoters, whereas a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences(5-10). Tissue-specific intragenic methylation might reduce(3), or, paradoxically, enhance transcription elongation efficiency(1,2,4,5). Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes(11-15). To investigate the role of intragenic methylation, we generated a map of DNA methylation from the human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were shown to be in intragenic and intergenic regions, whereas less than 3% of CpG islands in 59 promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters 16. The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus(17,18) and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue-and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies.
引用
收藏
页码:253 / U131
页数:8
相关论文
共 50 条
  • [1] Conserved role of intragenic DNA methylation in regulating alternative promoters
    Alika K. Maunakea
    Raman P. Nagarajan
    Mikhail Bilenky
    Tracy J. Ballinger
    Cletus D’Souza
    Shaun D. Fouse
    Brett E. Johnson
    Chibo Hong
    Cydney Nielsen
    Yongjun Zhao
    Gustavo Turecki
    Allen Delaney
    Richard Varhol
    Nina Thiessen
    Ksenya Shchors
    Vivi M. Heine
    David H. Rowitch
    Xiaoyun Xing
    Chris Fiore
    Maximiliaan Schillebeeckx
    Steven J. M. Jones
    David Haussler
    Marco A. Marra
    Martin Hirst
    Ting Wang
    Joseph F. Costello
    Nature, 2010, 466 : 253 - 257
  • [2] A conserved role for intragenic DNA methylation in alternative pre-mRNA splicing
    Oberdoerffer, Shalini
    TRANSCRIPTION-AUSTIN, 2012, 3 (03): : 106 - 109
  • [3] Role of promoters in regulating alternative splicing
    Kolathur, Kiran Kumar
    GENE, 2021, 782
  • [4] Intragenic Enhancers Act as Alternative Promoters
    Kowalczyk, Monika S.
    Hughes, Jim R.
    Garrick, David
    Lynch, Magnus D.
    Sharpe, Jacqueline A.
    Sloane-Stanley, Jacqueline A.
    McGowan, Simon J.
    De Gobbi, Marco
    Hosseini, Mona
    Vernimmen, Douglas
    Brown, Jill M.
    Gray, Nicola E.
    Collavin, Licio
    Gibbons, Richard J.
    Flint, Jonathan
    Taylor, Stephen
    Buckle, Veronica J.
    Milne, Thomas A.
    Wood, William G.
    Higgs, Douglas R.
    MOLECULAR CELL, 2012, 45 (04) : 447 - 458
  • [5] An epigenetic role for noncoding RNAs and intragenic DNA methylation
    James M Flanagan
    Laurence Wild
    Genome Biology, 8 (6)
  • [6] DNA methylation prevents intragenic transcription
    Eytan Zlotorynski
    Nature Reviews Molecular Cell Biology, 2017, 18 : 213 - 213
  • [7] The regulatory mechanisms of intragenic DNA methylation
    Lee, Sun-Min
    Choi, Won-Young
    Lee, Jungwoo
    Kim, Young-Joon
    EPIGENOMICS, 2015, 7 (04) : 527 - 531
  • [8] Evidence of a conserved functional role for DNA methylation in termites
    Glastad, K. M.
    Hunt, B. G.
    Goodisman, M. A. D.
    INSECT MOLECULAR BIOLOGY, 2013, 22 (02) : 143 - 154
  • [9] The alternative role of DNA methylation in splicing regulation
    Maor, Galit Lev
    Yearim, Ahuvi
    Ast, Gil
    TRENDS IN GENETICS, 2015, 31 (05) : 274 - 280
  • [10] Diverse DNA methylation statuses at alternative promoters of human genes in various tissues
    Cheong, Jieun
    Yamada, Yoichi
    Yamashita, Riu
    Irie, Takuma
    Kanai, Akinori
    Wakaguri, Hiroyuki
    Nakai, Kenta
    Ito, Takashi
    Saito, Izumu
    Sugano, Smuio
    Suzuki, Yutaka
    DNA RESEARCH, 2006, 13 (04) : 155 - 167