The invariant subspace method for solving nonlinear fractional partial differential equations with generalized fractional derivatives

被引:14
作者
Latif, Mohamed S. Abdel [1 ]
Kader, Abass H. Abdel [1 ]
Baleanu, Dumitru [2 ,3 ,4 ]
机构
[1] Mansoura Univ, Fac Engn, Math & Engn Phys Dept, Mansoura, Egypt
[2] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[4] Inst Space Sci, Magurele, Romania
关键词
Fractional differential equations; Generalized fractional derivative; Invariant subspace method; CALCULUS;
D O I
10.1186/s13662-020-02553-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the invariant subspace method can be successfully utilized to get exact solutions for nonlinear fractional partial differential equations with generalized fractional derivatives. Using the invariant subspace method, some exact solutions have been obtained for the time fractional Hunter-Saxton equation, a time fractional nonlinear diffusion equation, a time fractional thin-film equation, the fractional Whitman-Broer-Kaup-type equation, and a system of time fractional diffusion equations.
引用
收藏
页数:13
相关论文
共 23 条
[1]   Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model [J].
Algahtani, Obaid Jefain Julaighim .
CHAOS SOLITONS & FRACTALS, 2016, 89 :552-559
[2]  
Artale Harris P, 2013, Nonlinear Stud, V20, P471
[3]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[4]  
Diethelm K., 2010, LECT NOTES MATH
[5]   SIMILARITY SOLUTIONS OF FRACTIONAL ORDER HEAT EQUATIONS WITH VARIABLE COEFFICIENTS [J].
Elsaid, A. ;
Latif, M. S. Abdel ;
Maneea, M. .
MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) :245-254
[6]   Similarity Solutions for Multiterm Time-Fractional Diffusion Equation [J].
Elsaid, A. ;
Latif, M. S. Abdel ;
Maneea, Andm. .
ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
[7]   Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives [J].
Gambo, Y. Y. ;
Ameen, R. ;
Jarad, Fahd ;
Abdeljawad, T. .
ADVANCES IN DIFFERENCE EQUATIONS, 2018,
[8]  
Gambo YY, 2018, U POLITEH BUCH SER A, V80, P219
[10]  
Jarad F., 2018, Results Nonlinear Anal, V1, P88, DOI DOI 10.3934/DCDSS.2020039