Inhomogeneous coupled non-linear Schrodinger systems

被引:10
作者
Saanouni, Tarek [1 ]
Ghanmi, Radhia [2 ]
机构
[1] Qassim Univ, Coll Sci & Arts Uglat Asugour, Dept Math, Buraydah, Saudi Arabia
[2] Univ Tunis Manar, Fac Sci Tunis, LPOSES04 Partial Differential Equat & Applicat, Tunis 2092, Tunisia
关键词
STANDING WAVES; WELL-POSEDNESS; GROUND-STATE; BLOWING-UP; EQUATIONS; STABILITY; EXISTENCE; INSTABILITY; SCATTERING; SPACE;
D O I
10.1063/5.0047433
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work studies an inhomogeneous Schrodinger coupled system in the mass-super-critical and energy-sub-critical regimes. In the focusing sign, a sharp dichotomy of global existence and scattering vs finite time blow-up of solutions is obtained using some variational methods, a sharp Gagliardo-Nirenberg-type inequality, and a new approach of Dodson and Murphy [Proc. Am. Math. Soc. 145(11), 4859-4867 (2017)]. In the defocusing sign, using a classical Morawetz estimate, the scattering of global solutions in the energy space is proved.
引用
收藏
页数:37
相关论文
共 31 条
[1]   Partially coherent solitons on a finite background [J].
Akhmediev, N ;
Ankiewicz, A .
PHYSICAL REVIEW LETTERS, 1999, 82 (13) :2661-2664
[2]   Bound and ground states of coupled nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Colorado, E .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) :453-458
[3]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[4]   H1-scattering for systems of N-defocusing weakly coupled NLS equations in low space dimensions* [J].
Cassano, B. ;
Tarulli, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) :528-548
[5]  
Chen JQ, 2007, DISCRETE CONT DYN-B, V8, P357
[6]   On a class of nonlinear inhomogeneous Schrödinger equation [J].
Chen J. .
Journal of Applied Mathematics and Computing, 2010, 32 (01) :237-253
[7]   Stability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities [J].
De Bouard, A ;
Fukuizumi, R .
ANNALES HENRI POINCARE, 2005, 6 (06) :1157-1177
[8]   A NEW PROOF OF SCATTERING BELOW THE GROUND STATE FOR THE 3D RADIAL FOCUSING CUBIC NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4859-4867
[9]   Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation [J].
Farah, Luiz G. .
JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (01) :193-208
[10]   Instability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities [J].
Fukuizumi, R ;
Ohta, N .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2005, 45 (01) :145-158